两个独立样本t检验,如果样本非正态分布怎么办?用spss 1.通过F检验可以看到方差是否相等,你说的对的,看第二行2.样本标准差可以使用描述统计中的功能来计算,例如descpritive statistics3.如果样本数量30以上,可以当作正态分布.如果是小样本的话使用t检验即可.可以不管是否伪正态分布,如果不放心的话使用one sample k-s检验,检验总体是否为正态,p
假设某一样本符合正态分布 一般最小样本量为多少呢 最小样本量为4组。无论是否独立,无论参数是否相同,正态分布的随机数相加必然还是正态分布。有一组X1,X2,.,Xn是一组独立同分布的样本,服从正态分布;而Y1,Y2,.,Yn是另一组独立同分布的样本,服从另一个正态分布。那么X1+Y1,.,Xn+Yn必然也服从某种正态分布。X1+Y1,X2+Y2,.之间是独立的。X1与Y2,.,Yn都是独立的,以此类推。在这样的情况下,可以保证X1+Y1,.,Xn+Yn也是一组独立同分布的样本,服从某个正态分布。扩展资料:正态分布具有两个参数μ和σ^2的连续型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数σ^2是此随机变量的方差,所以正态分布记作N(μ,σ2)。μ是正态分布的位置参数,描述正态分布的集中趋势位置。概率规律为取与μ邻近的值的概率大,而取离μ越远的值的概率越小。正态分布以X=μ为对称轴,左右完全对称。正态分布的期望、均数、中位数、众数相同,均等于μ。σ描述正态分布资料数据分布的离散程度,σ越大,数据分布越分散,σ越小,数据分布越集中。也称为是正态分布的形状参数,σ越大,曲线越扁平,反之,σ越小,曲线越瘦高。参考资料来源:-正态分布
t检验之前一定要做正态检验吗 t检验只是大致要求样本服从正态分布,只要你的样本不是严重背离正态分布,那么t检验的结果都是可靠的.你仅需要使用条形图看看你的样本有没有严重背离正态分布就可以了.其理由是,根据中心极限定理,无论样本来自何种分布.