ZKX's LAB

一个正三棱柱,已知该三棱柱的顶点都在同一个球面上,且该三棱柱的高为根号三,底面周长为3,那么这个球 已知某正三棱柱内接于球

2021-04-05知识17

已知某正三棱柱的三视图如图所示,其中正视图是边长2的正方形,则俯视图的面积为 由题意,俯视图为边长为2的正三角形,面积为34×4=3,故答案为:3.

正三棱柱内有一个内切球,已知球的半径为R,则这个正三棱柱的底面边长 这道题是解决正三2113角形的性质问题,5261底边长为二倍的根号三。由题4102意可得截面图,1653如下图。已知是一个正三棱柱,因此截面是一个正三角形内内切一个圆。已知圆的半径为R,可以将圆心和三角形的一个顶点连接可以得到一个顶角为30°的直角三角形,因此由三角函数可得底边的一半长度为根号三倍的R,因此底边长为二倍的根号三。扩展资料本题中运用了正三角形的性质,正三角形的其他性质如下:1、等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。2、等边三角形每条边上的中线、高线和角平分线互相重合。(三线合一)3、等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线 或角的平分线所在的直线。4、等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一)5、等边三角形内任意一点到三边的距离之和为定值。(等于其高)6、等边三角形拥有等腰三角形的一切性质。(因为等边三角形是特殊的等腰三角形)参考资料:-正三角形的性质

三棱柱外接球的表面积?怎么算? 设正三棱柱的底2113面边长为a,高为5261h,球半径R,则底面三角形的高4102为(√3)a/2,于是有:1653R2=(h/2)2+[(2/3)(√3)a/2)]2,因此外接球的表面积=4/3×πR2拓展资料:在几何学中,三棱柱是一种柱体,底面为三角形。正三棱柱是半正多面体、均匀多面体的一种。三棱柱是一种五面体,且有一组平行面,即两个面互相平行,而其他三个表面的法线在同一平面上(不一定是平行的面)。这三个面可以是平行四边形。所有平行于底面的横截面都是相同的三角形。由于三棱柱也可以视为三面体截去2个顶点,故又称截角三面体,另外,因为正三棱柱具有对称性,且由2种正多边形组成,因此有人称正三棱柱为半正五面体。一般三棱柱有5个面、9个边和6个顶点。

#已知某正三棱柱内接于球

随机阅读

qrcode
访问手机版