怎么计算自协方差函数 2113自协方差在统计学中,特定5261时间序列或者连续信号4102Xt的自协方差是信号与其经过时间平移1653的信号之间的协方差。如果序列的每个状态都有一个平均数E[Xt]=μt,那么自协方差为其中 E 是期望值运算符。如果Xt是二阶平稳过程,那么有更加常见的定义:其中k是信号移动的量值,通常称为延时。如果用方差σ^2 进行归一化处理,那么自协方差就变成了自相关系数R(k),即有些学科中自协方差术语等同于自相关。(自协方差的概念)自协方差函数是描述随机信号X(t)在任意两个不同时刻t1,t2,的取值之间的二阶混合中心矩,用来描述X(t)在两个时刻取值的起伏变化(相对与均值)的相关程度,也称为中心化的自相关函数。
如何用直观的例子理解随机过程理论中随机过程的自相关函数和协方差函数的概念含义,它们在信号领域有何应用? 在学概率统计之前,我们学习的都是确定的函数。概率统计讨论了一次取值时获得的值是不确定的,而随机过程…
相关函数的协方差的性质 协方差的性质:1、Cov(X,Y)=Cov(Y,X);2、Cov(aX,bY)=abCov(X,Y),(a,b是常数);3、Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)。由协方差定义,可以看出Cov(X,X)=D(X),。