ZKX's LAB

MATLAB遗传算法求解有约束的非线性函数最优化 遗传约束最优化问题

2021-04-05知识6

最优化计算方法的目录 第一篇 线性规划第1章 线性规划的数学模型和基本性质1.1 线性规划问题及其数学模型1.1.1 问题的提出1.1.2 线性规划问题的数学模型1.2 线性规划问题的图解法1.2.1 图解法的步骤1.2.2 线性规划问题求解的几种可能结果1.3 线性规划的基本性质1.3.1 线性规划的基本概念1.3.2 凸集与凸集的顶点1.3.3 线性规划的基本定理习题第2章 单纯形法2.1 单纯形法的原理2.1.1 确定初始基本可行解2.1.2 最优性检验和解的判别2.1.3 从一个基本可行解转换到相邻且改善了的基本可行解2.2 单纯形法的计算步骤2.3 人工变量的处理方法2.3.1 大M法2.3.2 两阶段法2.4 单纯形法的有限终止性2.5 改进单纯形法2.5.1 单纯形法的矩阵描述2.5.2 改进单纯形法习题第3章 线性规划的对偶理论3.1 线性规划的对偶问题3.1.1 对偶问题的提出3.1.2 原问题与对偶问题之间的对偶关系3.2 对偶性定理3.3 对偶单纯形法3.3.1 对偶单纯形法的基本思路3.3.2 对偶单纯形法的计算步骤3.3.3 初始对偶基本可行解的求法习题第4章 灵敏度分析和参数线性规划4.1 灵敏度分析4.1.1 参数cj的灵敏度分析4.1.2 参数6i的灵敏度分析4.1.3 约束条件的系数列向量Ak的灵敏度分析4.1.4 增加。

在MATLAB中用神经网络算法求解无约束最优化问题 程序一:GA训练BP权值的主函数 function net=GABPNET(XX,YY)%使用遗传算法对BP网络权值阈值进行优化,再用BP算法训练网络%数据归一化预处理 nntwarn off XX=[1:19;2:20;3:21;4:22]';YY=[1:4];XX=premnmx(XX);YY=premnmx(YY);YY%创建网络 net=newff(minmax(XX),[19,25,1],{'tansig','tansig','purelin'},'trainlm');下面使用遗传算法对网络进行优化 P=XX;T=YY;R=size(P,1);S2=size(T,1);S1=25;隐含层节点数 S=R*S1+S1*S2+S1+S2;遗传算法编码长度 aa=ones(S,1)*[-1,1];popu=50;种群规模 save data2 XX YY%是将 xx,yy 二个变数的数值存入 data2 这个MAT-file,initPpp=initializega(popu,aa,'gabpEval');初始化种群 gen=100;遗传代数%下面调用gaot工具箱,其中目标函数定义为gabpEval[x,endPop,bPop,trace]=ga(aa,'gabpEval',[],initPpp,[1e-6 1 1],'maxGenTerm',gen,.'normGeomSelect',[0.09],['arithXover'],[2],'nonUnifMutation',[2 gen 3]);绘收敛曲线图 figure(1)plot(trace(:,1),1./trace(:,3),'r-');hold on plot(trace(:,1),1./trace(:,2),'b-');xlabel('Generation');ylabel('Sum-Squared Error');figure(2)plot(trace(:,1),trace(:,3),'r-');hold on plot。

分析标准粒子群算法的不足及改进的方法 一个以上的目标,以优化 一个以上的目标,以优化 相对传统的多目标优化方法在解决多目标问题,PSO具有很大的优势。首先,PSO算法和高效的搜索功能,有利于在这个意义上,多。

#带约束的遗传算法#遗传约束最优化问题

随机阅读

qrcode
访问手机版