余弦定理证明题 a/sinA=b/sinB=>;b=a*sinB/sinAS=1/2absinC1/2a*a*sinBsinC/sinA1/2a^2sinBsinC/sinA
正余弦转化公式 诱导公式(口诀:奇变2113偶不变,符号看象限.)5261sin(-α)=4102-sinαcos(-α1653)=cosα tan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式 万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)。
三角形知道三边,求面积。不用海伦公式和余弦定律,还有其它公式可解吗? 有:若三角形ABC的三条边长分别为a,b,c.则:S△=(1/4)√{4(a^2)(c^2)-[(b^2)-(a^2)-(c^2)]^2}或S△=(1/4)√{4(b^2)(c^2)-[(a^2)-(b^2)-(c^2)]^2}或S△=(1/4)√{4(a^2)(b^2)-[(c^2)-(a^2)-(b^2)]^2}推导方法:如图:在平面直角坐标系中,三角形的三个顶点坐标分别为(0,0),(a,0),(m,n).则:(m^2)+(n^2)=c^2,(b^2)-[(a-m)^2]=n^2.两等式化简求得:n=(1/2a)√{4(a^2)(c^2)-[(b^2)-(a^2)-(c^2)]}所以;S△=(1/2)an=(1/4)√{4(a^2)(c^2)-[(b^2)-(a^2)-(c^2)]^2}同理:S△=(1/4)√{4(b^2)(c^2)-[(a^2)-(b^2)-(c^2)]^2}S△=(1/4)√{4(a^2)(b^2)-[(c^2)-(a^2)-(b^2)]^2}