ZKX's LAB

为什么函数(1+x)^(1x)是连续函数(在其定义域上)用基本初等函数怎么看? y1x在定义域上连续函数

2020-07-25知识12

1/X 函数连续性 定理(反函数的连续性)若函数f(x)在闭区间[a,b]上严格递增(递减)且连续,则反函数x=f-1(y)。在[f(a),f(b)]([f(b),f(a)])上严格递增(递减)且连续。br/>;证:x。1/X 函数连续性 定理(反函数的连续性)若函数f(x)在闭区间[a,b]上严格递增(递减)且连续,则反函数x=f-1(y)。在[f(a),f(b)]([f(b),f(a)])上严格递增(递减)且连续。 证:x=f-1。所有基本初等函数在其定义域内都是连续的,这句话对吗 所有基本初等函2113数在其定义域内都是连续的,这句5261话是对的。连续函4102数的其他性质:1、在某点连续的有限个1653函数经有限次和、差、积、商(分母不为0)运算,结果仍是一个在该点连续的函数。2、连续单调递增(递减)函数的反函数,也连续单调递增(递减)。3、连续函数的复合函数是连续的。4、一个函数在某点连续的充要条件是它在该点左右都连续。扩展资料:连续函数的相关定理:1、闭区间上的连续函数在该区间上一定有界。2、闭区间上的连续函数在该区间上一定能取得最大值和最小值。证明:利用确界原理:非空有上(下)界的点集必有上(下)确界。3、若f(a)=A,f(b)=B,且A≠B。则对A、B之间的任意实数C,在开区间(a,b)上至少有一点c,使f(c)=C。闭区间上的连续函数在该区间上必定取得最大值和最小值之间的一切数值。4、闭区间上的连续函数在该区间上一致连续。所谓一致连续是指,对任意ε>;0(无论其多么小),总存在正数δ,当区间I上任意两个数x1、x2满足|x1-x2|<;δ时,有|f(x1)-f(x2)|<;ε,就称f(x)在I上是一致连续的。1/x是在定义域内是连续函数? f(x)=1/x定义域=(-∞,0)U(0,+∞)x0≠0lim(x->;x0)1/x=1/x0f(x)在定义域内是连续函数是,但不是一致连续。。y等于x分之一在定义域内是不是连续函数?查看问题描述 ? 3 iso 是,但不是一致连续。展开阅读全文 ? ? ? ? ? 。

#初等函数#定义域

随机阅读

qrcode
访问手机版