高斯过程 均值函数 协方差矩阵 自相关函数 R和Q矩阵一般来说都是提前设定一个值,因为卡尔曼滤波是一种迭代优化滤波器,所以不必要使得初始化的值十分精确。当然,如果设定越接近真实值其结果越准确,算的速度也越快。
SLAM的滑动窗口算法中,在边缘化时,高斯牛顿法的信息矩阵为什么是 优化变量协方差的逆? State Estimation for Robotics.https:// wiseodd.github.io/techb log/2018/03/11/fisher-information/关于Fisher Information很好的讲解 ? 18 ? ? 添加评论 8 人。
怎么用python表示出二维高斯分布函数,mu表示均值,sigma表示协方差矩阵,x表示数据点 clearclose all生成实验数据集rand('state',0)sigma_matrix1=eye(2);sigma_matrix2=50*eye(2);u1=[0,0];u2=[30,30];m1=100;m2=300;样本数sm1数据集Y1=multivrandn(u1,m1,sigma_matrix1);Y2=multivrandn(u2,m2,sigma_matrix2);scatter(Y1(:,1),Y1(:,2),'bo')hold onscatter(Y2(:,1),Y2(:,2),'r*')title('SM1数据集')sm2数据集u11=[0,0];u22=[5,5];u33=[10,10];u44=[15,15];m=600;sigma_matrix3=2*eye(2);Y11=multivrandn(u11,m,sigma_matrix3);Y22=multivrandn(u22,m,sigma_matrix3);Y33=multivrandn(u33,m,sigma_matrix3);Y44=multivrandn(u44,m,sigma_matrix3);figure(2)scatter(Y11(:,1),Y11(:,2),'bo')hold onscatter(Y22(:,1),Y22(:,2),'r*')scatter(Y33(:,1),Y33(:,2),'go')scatter(Y44(:,1),Y44(:,2),'c*')title('SM2数据集')endfunction Y=multivrandn(u,m,sigma_matrix)生成指定均值和协方差矩阵的高斯数据n=length(u);c=chol(sigma_matrix);X=randn(m,n);Y=X*c+ones(m,1)*u;end