ZKX's LAB

约束凸优化 梯度法 怎么求解大型凸二次规划问题?

2021-03-25知识8

最优化问题中,牛顿法为什么比梯度下降法求解需要的迭代次数更少? 经常看到资料上这么写,谁能给出详细点的解释,比如在几何方面上的解释

什么是最优化 最优化是应用数学32313133353236313431303231363533e58685e5aeb931333436323239的一个分支,主要指在一定条件限制下,选取某种研究方案使目标达到最优的一种方法。最优化问题在当今的军事、工程、管理等领域有着极其广泛的应用。常见方法?:1.梯度下降法(Gradient Descent)梯度下降法是最早最简单,也是最为常用的最优化方法。梯度下降法实现简单,当目标函数是凸函数时,梯度下降法的解是全局解。一般情况下,其解不保证是全局最优解,梯度下降法的速度也未必是最快的。梯度下降法的优化思想是用当前位置负梯度方向作为搜索方向,因为该方向为当前位置的最快下降方向,所以也被称为是”最速下降法。最速下降法越接近目标值,步长越小,前进越慢。2.牛顿法(Newton's Method)和拟牛顿法(Quasi-Newton Methods)(1)牛顿法:牛顿法是一种在实数域和复数域上近似求解方程的方法。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x)=0的根。牛顿法最大的特点就在于它的收敛速度很快。(2)拟牛顿法:拟牛顿法是求解非线性优化问题最有效的方法之一,其本质思想是改善牛顿法每次需要求解复杂的Hessian矩阵的逆矩阵的缺陷,它使用正定矩阵来近似Hessian矩阵的逆,。

怎么求解大型凸二次规划问题?

什么是梯度下降法? 梯度下降法简单来说就是一种寻找目标函数最小化的方法。张戎:深度学习中的优化算法在深度学习中,经常有…

非线性优化中的 KKT 条件该如何理解? 普通本科数学教材中都会介绍Lagrange乘子法,用于求解带等式约束的极值问题,KKT条件是拉格朗日乘子法的…

为什么凸优化这么重要? 觉得有必要写在前面的话:本答案主要面向运筹学、管理科学、运营管理、工业工程、系统工程等相关专业的以…

约束凸优化 梯度法 怎么求解大型凸二次规划问题?

#约束凸优化 梯度法

随机阅读

qrcode
访问手机版