ZKX's LAB

超顺磁性效应 关于质子弛豫增强效应与对比增强的表达,哪项错误() A.一些顺磁或超顺磁性物质使局

2021-03-25知识4

超顺磁性的特点 超顺磁性行为有两个最重要的特点:一是如果以磁化强度M为纵坐标,以H/T为横坐标作图(H是所施加的磁场强度,T是绝对温度),则在单畴颗粒集合体出现超顺磁性的温度范围内,分别在不同的温度下测量其磁化曲线,这些磁化曲线必定是重合zd在一起的。二是不会出现磁滞,即集合体的剩磁和矫顽力都为零。当铁磁体或亚铁磁体的尺寸足够小的时候,由于热骚动影响,这些纳米粒子会随机地改变方向。假设没有外磁场,则通常它们不会表现出磁性。但是,假设施加外磁场,则会被磁化,就像顺磁性一样,而且磁化率回超大于顺磁体的磁化率。对于磁性集合体来说,有两个量很重要:一是出现超顺磁性的临界尺寸(直径)Dp。如果颗粒系统的温度保持恒定,则只有当颗粒尺寸D≤Dp才有可能呈现超顺磁性,该直径小于单畴颗粒的临界直径。二是截止温度TB,对于足够小的磁性颗粒,存在一特征温度TB,当温度T时,颗粒呈现强磁性(铁磁性或亚铁答磁性);T≥TB时,颗粒呈现超顺磁性。

超顺磁效应的垂直记录技术,以厚度对抗超顺磁效应 AFC技术实际上是一种变相增加磁层厚度的办法—每一个磁层的厚度虽然比较小,但总的磁层厚度却增加了。垂直记录技术从本质上来说与AFC相似,它在提高磁记录密度的同时,通过增加磁性材料的厚度来维持磁记录单元的体积。第一款垂直记录硬盘—东芝MK4007GAL/MK8007GAH的磁录密度为133Gbits/sq.in,业界保守估计,预计记录密度提高到600Gb/sq.in左右时,垂直记录技术将遭遇存储密度的极限。根据过去的经验,未来几年内材料科学的发展,超越1Tb/sq.in也是完全有可能的。

超顺磁效应的介绍 磁性材料的磁性随温度的变化而变化,当温度低于居里点时,材料的磁性很难被改变;而当温度高于居里点时,材料将变成“顺磁体”(paramagnetic),其磁性很容易随周围的磁场改变而改变。如果温度进一步提高,或者磁性颗粒的粒度很小时,即便在常温下,磁体的极性也呈现出随意性,难以保持稳定的磁性能,这种现象被就是所谓超顺磁效应(SuperparaMagnetic Effect)。

超顺磁性的基本定义 超顺磁性(superparamagnetism):如果磁性材料是一单畴颗粒的集合体,对于每一个颗粒而言,由于磁性原子或离子之间的交换作用很强,磁矩之间将平行取向,而且磁矩取向在由。

超顺磁效应的反铁磁耦合,锁定存储位 为克服超顺磁效应的障碍,研究人员找到了一些办法,其中最具代表性的技术是IBM的AFC。(Anti Ferro_magnetically Coupled,反铁磁耦合)和富士通的SFM(Synthetic Ferro Media,合成铁介质),它们虽然名称不同,原理则基本相同,都是通过使用多层磁体结构来稳定磁记录信息的技术。下面简单介绍一下AFC技术的实现原理。普通磁盘的磁性涂层只有一层,而使用AFC技术,将磁性材料制成多层结构,除记录层以外,再使用稳定层,并且在记录层和稳定层之间增加一个钌层(Ru layer)。钌(Ru)元素属铂族金属,为稀有金属,价格十分昂贵,正因为如此,IBM才称它为“仙尘”(Pixie Dust),AFC也因此成为一个价格高昂的技术。钌元素具有反铁磁性,它能使相邻两层之间的磁场方向相反。当写磁盘时,磁头所产生的磁场不仅可以在最上层产生小磁极,由于钌层的存在,写电流所产生的磁场还穿过钌层使稳定层磁化,并使稳定层与记录层磁体极性相反。稳定层与记录层之间因磁场反向,异性相吸而相互锁定,从而实现记录层磁场的稳定。传统介质出现超磁现象的线密度为200Gbpsi,而使用AFC介质后出现超磁现象的线可以提高到达800Gbpsi。因此,AFC介质的出现再次将磁存储密度的极限向后推移。

超顺磁效应的硬盘发展无法避开超顺磁效应 硬盘盘片是通过在盘基上涂覆一层磁性材料制成的,常用的磁性材料为钴铂铬硼(CoPtCrB)合金。磁性材料的颗粒大小直接影响盘片的磁记录密度,因为磁盘上表示信息的小磁极是由数百个磁性颗粒组成,磁记录密度越高,要求磁性材料的粒度越细。硬盘的磁记录密度为20Gbpsi(每个盘片约为30GB)时,磁性颗粒的直径为13nm,磁性涂层的厚度为17nm左右。要实现100Gbpsi的磁记录密度,就必须把粒径和涂层厚度分别缩小到9.5nm和10nm。随着磁性颗粒的缩小,表示数据的小磁极会变得越来越不稳定。引起不稳定的原因在于热能,磁性颗粒必须拥有足够的磁能才能抗拒颗粒所具有的热能的干扰。热能为玻耳兹曼常数与温度的乘积,热能随温度升高而增强;而磁能的大小取决于磁力大小和粒子体积,由于已经使用磁性最强的材料,没有进一步增强磁力的空间了,因此磁性颗粒的磁能将随粒度的缩小而降低。如果继续降低磁性颗粒的体积,以至于磁能低于热能,硬盘本身的温度甚至室温就可以让磁性颗粒的极性从有序变成无序,导致小磁极的整体极性消失,如图1(a)。这种现象被称为“热搅动(Thermal Fluctuation)”,热搅动现象将导致数据的永久性丢失。所以说,为提高硬盘存储密度而缩小磁性颗粒的。

超顺磁性效应 关于质子弛豫增强效应与对比增强的表达,哪项错误() A.一些顺磁或超顺磁性物质使局

超顺磁效应的前景 如果按现在的的存储密度增长速度,未来的5到10年内数据位将变得非常小,以至于现有的技术对超顺磁效应失去作用。所以,包括Seagate、HItachi-IBM和Fujits在内的主要硬盘制造商都在围绕这个问题开展研究,有些技术在实验室里已经取得成功,进入到装备研制阶段。其中热辅助磁头记录技术被Seagate和Hitachi共同看好,也有另外一些技术为个别厂家多独有。下面按照思路的不同逐一进行简要介绍。从磁性材料的特性方面着手,寻找更为稳定的磁介质(如铁铂粒子),可以在一定程度上解决超顺磁效应的问题。不过,随之而来的问题是:现有的磁头无法将数据写到这类介质上,于是希捷公司正在研究一种热辅助磁记录技术(Heat Assisted Magnetic Recording,HAMR),使用激光热辅助手段将数据记录到高稳定性介质上,而且随后的快速冷却又可以使已写入的数据变得稳定。不管怎样,目前激光技术完全可以为这一思路提供支援,是一条可行的技术路线。Hitachi-IBM也十分看好这条路线,他们给这项技术的名称是“热辅助记录”(Thermal Assisted Recording,TAR)。为了提高存储密度,惯常的思路是不断缩小磁颗粒的尺寸,这也是造成超顺磁效应的主要原因。既然如此,如果反其道而行之,岂不是。

关于质子弛豫增强效应与对比增强的表达,哪项错误() A.一些顺磁或超顺磁性物质使局 参考答案:D

超顺磁效应的超顺磁效应概述 自1956年IBM推出RAMAC以来,硬盘的存储密度从当初200bits/in2提升到现在的100Gbits/in2,整整提高了5千万倍!但是,由于存储位变得越来越小,会出现超顺磁性效应,热扰动会降低信号强度,甚至导致存储失效。

超顺磁性的介绍

#超顺磁性效应

随机阅读

qrcode
访问手机版