ZKX's LAB

曲线光滑一定连续吗 连续、光滑的函数,一定可导吗?

2021-03-24知识9

光滑曲线一定是连续的~但连续的函数不一定光滑对吗~对吗~

为什么数学上的光滑曲线不仅处处连续可导,导数也要处处连续可导 若函数f(x)在区间(a,b)内具有一阶连续导数,则其图形为一条处处有切线的曲线,且切线随切点的移动而连续转动,这样的曲线称为光滑曲线。与光滑曲线相对应的就是折线,考虑折线y=x(x∈(-∞,0))y=-x(x∈[0,∞))此折线,处处连续且可导,但在x=0这一点附近,x→0-时,其导数为1x→0+时,其导数为-1其导数不连续

连续、光滑的函数,一定可导吗? 1 连续函数不一定可导,可导一定连续。比如函数y=|x|连续但不可导;2 光滑函数,一定可导。光滑的定义:若f的导函数在[a,b]上连续,则称f在[a,b]上光滑。就是说光滑不但要求可导,而且要求导函数也连续,这要比仅仅要求函数可导条件更为苛刻一些。从应用来说,连续函数在分析学基础课程里出现较多;而光滑的概念,则在傅里叶级数里开始出现,至于后续分析课程,比如调和分析,微分几何,偏微分方程等等,因为对函数要求更高而更多使用光滑或者分段光滑的概念。下图是函数y=|x|的图像,在原点连续但不可导。类似的例子非常多。

曲线光滑一定连续吗 连续、光滑的函数,一定可导吗?

连续,光滑的函数,一定可导吗 不一定。连续光滑的曲线,必然处处有切线,这点是必然的,没有切线的地方,就不光滑。但是有切线和可导,是两个概念。如果切线垂直于x轴,那么切线无斜率,导数不存在。。

请问什么是光滑曲线? 你应该是高中生吧?各个领域的光滑曲线解释不一样.高等数学微积分这块的定义是:若函数f(x)在区间(a,b)内具有一阶连续导数,则其图形为一条处处有切线的曲线,且切线随切点的移动而连续转动,这样的曲线称为光滑曲线.高中生的话可以理解为曲线每一点都存在切线.不是任意曲线都存在切线,是光滑曲线才每一点都存在切线.这涉及到曲线的定义.高中接触到的曲线都是光滑的,所以在你看来都是任一点都是有切线的.到以后你会慢慢发现的.切点的移动切线不停转动.就是切点慢慢变动,切线斜率慢慢变大或者变小.比如x的平方这个函数,在0的右边,从0开始,切线斜率为0,越往左,斜率越大,角度越大,这样就是转动.如果你是大学生的话可以给你举个例子.f(x)=x^2*sin(1/x),f(0)=0.f处处可导,但导数在0点不连续.换句话说,曲线(x,f(x))在原点不光滑.

光滑曲线一定是连续的吗? 光滑的曲线看你的出发点是在哪了?如果是出发点是从一点出发的话,那么可能是他。连续的有可能是不连续的,例如在一三象限里面出现的平滑的曲线,那么他们就不是连续的,而。

函数的图像不一定都是连续的光滑曲线,也可以是——等 分段函数

高数定理很多有个前提 连续光滑曲线,那么 什么是连续不光滑曲线 举个例子。 例,y=|x|。我。知。道 加。我。私。聊 例,y=|x|。我。知。道 加。我。私。聊 新闻 网页 微信 知乎 图片 视频 明医 英文 问问 更。? 2020SOGOU.COM 京ICP证050897号

#曲线光滑一定连续吗

随机阅读

qrcode
访问手机版