ZKX's LAB

费马原理与光的折射定律的关系 如何用费马原理证明光的反射定律?

2020-07-24知识22

怎样用时间最短原理(费马提出的)证明光的折射定律? 费马原理对折射定律的证明假设光从介质n_1入射到介质n_2.在两个介质的交界面上取一条直线?为x轴,法线为y轴,建立直角坐标系?在入射光线上任取一点A(x_1,y_1),光线与两介质交界面的交点为B(x,0),在折射.用费马定理证明光的折射与反射定理 哈哈‘‘你问对了‘我的专业反射定理考虑由Q发出经反射面到达P的光线.相对于反射面取P的镜像对称点P’,从Q到P任一可能路径QM’P的长度与QM’P’相等.显然,直线QMP’是其中最短的一根,从而路径QMP长度最短.根据肥马原理,QMP是光线的实际路径.折射定律考虑由Q出发经折射面折射到达P的光线.作QQ’与PP’平行,故而共面,我们称此平面为Ⅱ.考虑从Q经折射面上任一点M’到P的光线QM’P.由M’作垂足Q’、P’联线的垂线M’M,不难看出QM’,PM’,既光线QM’P在Ⅱ平面上的投影QMP比QM’P本身的光程更短.可见光程最短的路径应在Ⅱ平面内寻找.假设QQ’=h1,PP'=h2,Q’P’=P,Q'M=x,则(QMP)=n1QM+n2MP既 d(QMP)/dx=n1x/根号(h1*h1+x*+)-n2(p-x)/根号(h2*he+(p-x)*(p-x)由光程的最小条件d(MQP)/dx=0 可得 n1sini1=n2sini2如何用费马原理证明光的反射定律? 如何用费马原理证明光的反射定律的回答如下:1、方法:1)首先是假设是在均匀介质中,只有反射光线在入射光线和法线的平面内才可能按照最小光程传播,因为copy任何反射光线路径都不小于它在此平面内的投影.2)可以第二步是设入射光线和反射光线分别过百A、B点,在度反射面同侧,作C点与A点沿反射面对称,连接BC交反射面于D点,易证AD=CD,然后由于两点之间直线最短,可以知道ACB是最短光程路线,而且符合反射定律,这样即可证明。2、相关内容:费马原理最早由法国科学家皮埃尔·德·费马在1662年提出:光传播的路径是光程取极值的路径。这个极值可能是最大值、最小值知,甚至是函数的拐点。道最初提出时,又名“最短时间原理”:光线传播的路径是需时最少的路径。费马原理更正确的称谓应是“平稳时间原理”:光沿着所需时间为平稳的路径传播。所谓的平稳是数学上的微分概念,可以理解为一阶导数为零,它可以是极大值、极小值甚至是拐点,费马原理可以证明光的反射原理。3、英文表示:Fermat principle如何用马吕斯定理或费马原理验证光的反射定律与折射定律? 费马原理对折射定律的证明假设光从介质n_1入射到介质n_2.在两个介质的交界面上取一条直线?为x轴,法线为y轴,建立直角坐标系?在入射光线上任取一点A(x_1,y_1),光线与两介质交界面的交点为B(x,0),在折射光线上任取一点C(x_2,y_2).AB之间的距离为\\sqrt,BC之间的距离为\\sqrt.由费马原理可知,光从A点经过B点到辠C点,所用的时间t 应该是最短的.t=\\left(\\frac\\right)(ABn_1+BCn_2),t 取最小值的条件是\\frac=0.经整理得 \\frac=\\frac,\\sin\\theta_1=\\frac 且 \\sin\\theta_2=\\frac 即 n_1\\sin\\theta_1=n_2\\sin\\theta_2(Snell's law)如何用费马原理证明光的反射定律 费马定理的定义是光总是走光程极百值路线,一般都是极小值。对于光从A到B点的反射来说,如果反射点为C,光线走度过的实际路线必然是使得ACB最短的路线,也版就是入射角等于折射角,入射光线和权反射光线对称的路线,即为折射定律。利用费马原理证明光的反射定律及折射定律 对反射定律的证明:费马定理的定义是光总是走光程极值路线,一般都是极小值。对于光从A到B点的反射来说,如果反射点为C,光线走过。用费马定理证明光的折射定律 反射定理考虑由Q发出经反射面到达P的光线.相对于反射面取P的镜像对称点P’,从Q到P任一可能路径QM’P的长度与QM’P’相等.显然,直线QMP’是其中最短的一根,从而。

#折射定律#费马原理

随机阅读

qrcode
访问手机版