造成碱金属原子精细能级的原因是什么 原子光谱精细结构形成的根本物理原因是电子的自旋轨道耦合 碱金属原子光谱精细结构形成的根本物理原因:电子自旋的存在-轨道的相互作用、电子的自旋轨道耦合。
碱金属原子光谱精细结构形成的根本物理原因是什么
碱金属原子光谱的简介 众所熟知的钠黄光波长为589.3纳米,就是钠光谱主线系的第一条谱线。碱金属原子都具有相似的结构,内层的z-1 个电子与原子核组成原子实,最外层只有一个价电子,与氢原子有些类似,不同的是电子运动对原子实有极化和贯穿作用,引起不同轨道的电子能态的较大分裂,能级对l的简并解除。另外由于电子自旋取向不同,引起自旋轨道耦合的能量微小分裂,因此碱金属原子的能级除S态是单层的外,其他P、D、F态都是双层的。根据单价原子光谱的选择定则,可得出,主线系和锐线系是双线结构,漫线系和基线系为三线结构。
碱金属原子光谱的能级公式 碱金属原子的能级公式与氢原子相似式中墹l为量子亏损,是一个与角动量量子数l有关的正数,R是碱金属的里德伯常数。显然,碱金属的能级不但与n有关,而且与l有关。上式还可写为 Z*称为有效核电荷数。以锂为例,四个线系公式为主 线 系|第一辅线系第二辅线系|伯格曼线系|其他碱金属原子的线系公式也相似。图2是锂原子的能级和光谱线系的示意图。当用分辨本领足够大的分光仪器去观察碱金属原子的一条光谱线时,会看出它是由二条或三条锐线组成,这称为光谱线的双重结构(或复双重结构),有时也称碱金属原子光谱的精细结构。例如钠光谱主线系的第一条实为589.0nm和589.6nm两条线组成,其平均值为589.3nm,一切碱金属原子的光谱都有类似的双重结构。碱金属原子谱线的双重结构是由于电子自旋与轨道运动相互作用的结果,电子的自旋角动量等于即自旋量子数s=1/2。又由于电子自旋角动量相对于轨道角动量只可能有两个取向,故电子的总角动量量子数碱金属原子在满充壳层外面只有一个价电子,满充壳层的总角动量为零,所以价电子的总角动量就等于原子的总角动量。与自旋的两种取向相对应,电子自旋与轨道相互作用造成了能级分裂为二,所以碱金属原子的光谱项是双层的,对于Л=0,。
什么是光谱的精细结构?产生精细结构的原因是什么 答案:碱金属原子光谱精细结构形成的根本物理原因是电子的自旋轨道耦合碱金属原子光谱精细结构形成的根本物理原因:电子自旋的存在-轨道的相互作用、电子的自旋轨道耦合。
碱金属原子光谱精细结构公式中的a值是什么 a称为第一玻尔半径.轨道半径也是量子化的,其大小只能是玻尔半径的1(1的平方)倍,4(2的平方)9(3的平方)…
碱金属原子光谱的观察结果 图1画出了锂原子光谱的四个线系。从图中可以看到主线系的波长范围最宽、第一条是红色的,其余的都在紫外。线系限是229.97nm;第一辅线系在可见光区部分;第二辅线系的第一条在红外区,其余在可见光区,这二线系有同一线系限,伯格曼线系在红外区,其他碱金属原子也有相似的光谱线系,只是波长不同,例如钠的主线系的第一条线是大家熟悉的黄色光,波长为589.3nm。
碱金属能级形成精细结构的原因是 碱金属原子光谱精细结构是由于电子自旋与轨道相互作用引起的
百度安全验证