如何使用正态分布变换进行配准 正态分布变换算法是一个配准算法,它应用于三维点的统计模型,使用标准最优化技术来确定两个点云间的最优的匹配,因为其在配准过程中不利用对应点的特征计算和匹配,所以时间比其他方法快。代码如下:结果输出:
如何将一般正态分布标准化 ^答:假设X~N(μ,σ^2),则Y=(X-μ)/σ~N(0,1).证明;因为X~N(μ,σ^2),所以P(x)=(2π)^(-1/2)*σ^(-1)*exp{[-(x-μ)^2]/(2σ^2)}.(注:F(y)为Y的分布函数,Fx(x)为X的分布函数)而 F(y)=P(Y≤y)=P((X-μ)/σ≤y)=P(X≤σy+μ)=Fx(σy+μ)所以 p(y)=F'(y)=F'x(σy+μ)*σ=P(σy+μ)*σ=[(2π)^(-1/2)]*e^[-(x^2)/2].从而,N(0,1).正态分布标准化的意义是可以方便计算,是一种统计学概念。原本的正态分布图形有高矮胖瘦不同的形态,实际上是积分变换的必然结果,就好比是:y=kx+b 直线,它不一定过原点的,但是通过变换就可以了:大Y=y-b;大X=kx;大Y=大X2.y=a*b 乘积,通过变换就可以变成加法运算:Ln(y)=Lna+Lnb3.y=ax2+bx+c 通过变换就可以变成标准形式:y=a(x+b/(2a))2+(c-b2/(4a))正态分布的标准化也只不过是“积分变换”而已,虽然高矮胖瘦不同的形态,但是 变量的 线性伸缩变换 并不改变其 量化特性,虽然标准化以后都变成期望是0,方差是1的 标准分布了,但这种 因变量 自变量的 依赖关系仍然存在,不用担心会“质变”。拓展资料:
如何使用正态分布变换进行配准 基于灰度信息的图像配准方法 基于灰度信息的图像配准方法一般不需要对图像进行复杂的预先处理,而是利用图像本身具有灰度的一些统计信息来度量图像的相似程度。主要特点是实现简单,但应用范围较窄,不能直接用于校正图像的非线性形变,在最优变换的搜索过程中往往需要巨大的运算量。经过几十年的发展,人们提出了许多基于灰度信息的图像配准方法,大致可以分为三类:互相关法(也称模板匹配法)、序贯相似度检测匹配法、交互信息法。(1)互相关法 互相关法是最基本的基于灰度统计的图像配准的方法,通常被用于进行模板匹配和模式识别。它是一种匹配度量,通过计算模板图像和搜索窗口之间的互相关值,来确定匹配的程度,互相关值最大时的搜索窗口位置决定了模板图像在待配准图像中的位置。设A图像为参考图像或基准图像,表示为,B为要进行校正后与A配准的图像,表示为,在A图像中选择几块包含特征信息丰富的小区域 作模板,在 图像重叠部分选择一个 重叠区域作为模板的搜索区域,并使得,即,如图14-3所示。然后把每一个模板 放在与其对应的搜索区 中,通过两者的相对移动,在逐行逐列的每个位置上,计算 与其覆盖的搜索区 中那部分之间的相似性,产生出表明两者。
SPSS非正态分布数据如何修改成为正态分布数据!急求 可以应用变量变换的方法,将不服从正态分布的资料转化为非正态分布或近似正态分布。常用的变量变换方法有对数变换、平方根变换、倒数变换、平方根反正玄变换等,应根据资料。
如何使用正态分布变换进行配准
标准正态分布是怎么转换过去的? 这个普通正态分布转换到标准正态分布,顶上那个用Z替换了,那底下那个西格玛怎么就变成1没了?