ZKX's LAB

倒向随机微分方程实例 求解随机微分方程

2021-03-09知识9

微分方程应用的实例.最好有过程分析的.

什么是随机微分方程,求举个实际例子 微分方程中含有随机参数或随机过程(函数)或随机初始值或随机边界值的叫随机微分方程:举个简单的例子:1)my'‘+cy'+ky=f(t)f(t)-平稳随机过程的一个样本函数;求y(t);2)my'‘+cy'+ky=0 其中 N(0,1);求自由振动y(t).等等

常微分方程的实例 下列方程都是微来分方程(其中自 y,v均为未知函数知).(1)y'=kx,k 为常数道;(2)(y-2xy)dx+x2 dy=0;(3)mv'(t)=mg-kv(t);

求解随机微分方程 sqr(·)表示平方根(1)Y满足的方程,用Ito公式即可dY=2(2-X)Xdt+2Xsqr(X)dBt+XdBt=(5X-2X^2)dt+2Xsqr(X)dBt(2)先把X的微分方程携程积分形式,积分限是从0到t,下面省略不写Xt=X0+∫(2-Xs)ds+∫sqr(Xs)dBs,两边取期望,最后一项是鞅,期望为0,变为EXt=EX0+E∫(2-Xs)dsEX0+∫E(2-Xs)dsEX0+2t-∫EXsds令f(t)=EXt,则f(t)=EX0+2t-∫f(s)ds,写成常微方程为f'(t)+f(t)-2=0 且初始条件为f(0)=EX0解得EXt=f(t)=(EX0-2)e^(-t)+2

微分方程应用的实例。最好有过程分析的。 光滑平面上弹簧振子的运动:在弹性限度内,从平衡位置水平拉开距离A后释放,弹簧振子随即震动起来,选平衡位置为坐标原点,弹簧伸长方向为x轴,x=0时开始计时,在任意时刻t,位移为x,物体的运动加速度与所受弹力(f=-kx)的关系服从牛顿第二定律m(d2x/dt2)=-kx,令d2x/dt2=x'',k/m=ω2x''+ω2x=0特征方程r2+ω2=0的解为r=±ωi因此微分方程的解为x=Ccosωt+Dsinωt我们可以用三角公式表示为x=Acos(ωt+a)A,a待定系数t=0时,x=0,=>;0=Acosa=>;a=π/2,则x=Acos(ωt+π/2)(cos的最大值是1,A便是振幅)

什么是随机微分方程,求举个实际例子 微分方程中含有随机参数或随机过程(函数)或随机初始值或随机边界值的叫随机微分方程:举个简单的例子:1)my'‘+cy'+ky=f(t)f(t)-平稳。

实变函数 复变函数 常微分方程 偏微分方程 随机过程的学习顺序 先学复变函数,再学常微分方程。因为微分方程都要在复数域内讨论。实变函数一般在大三学,先修课程是复变函数和数学分析。随机过程内容不了解,一般本科生大三学。偏微分。

实变函数 复变函数 常微分方程 偏微分方程 随机过程的学习顺序 自己已经学过了 数学分析 高等代数 概率论和数理统计 想问下上述5门课程是否有学习的顺序内在的联系还请推荐。

倒向随机微分方程实例 求解随机微分方程

什么是常微分方程?偏微分方程?举个例子 凡含有参数,未知函数和未知函数导数(或微分)的方程,称为微分方程,有时62616964757a686964616fe59b9ee7ad9431333264646539简称为方程,未知函数是一元函数的微分方程称作常微分方程,未知数是多元函数的微分方程称作偏微分方程.微分方程中出现的未知函数最高阶导数的阶数,称为微分方程的阶.定义式如下:F(x,y,y¢,.,y(n))=0 定义2 任何代入微分方程后使其成为恒等式的函数,都叫做该方程的解.若微分方程的解中含有任意常数的个数与方程的阶数相同,且任意常数之间不能合并,则称此解为该方程的通解(或一般解).当通解中的各任意常数都取特定值时所得到的解,称为方程的特解.一般地说,n 阶微分方程的解含有 n个任意常数。也就是说,微分方程的解中含有任意常数的个数和方程的阶数相同,这种解叫做微分方程的通解。通解构成一个函数族。如果根据实际问题要求出其中满足某种指定条件的解来,那么求这种解的问题叫做定解问题,对于一个常微分方程的满足定解条件的解叫做特解。对于高阶微分方程可以引入新的未知函数,把它化为多个一阶微分方程组。常微分方程常微分方程的概念、解法、和其它理论很多,比如,方程和方程组的种类及解法、解的存在性和唯一性、奇解、。

怎样学习随机微分方程?需要哪些基础? 具备大学本科数学水平,包括微积分、线性代数、概率论与数理统计和随机过程的。?www.zhihu.com Apoligize for a f*ing linux PC without chinese input qnd french clqvier

#倒向随机微分方程实例

随机阅读

qrcode
访问手机版