请问用费马原理如何推导傍轴条件下反射球面镜的物像距成像公式:(物距倒数)+(像距倒数)=-2*(曲率半径的倒数) 简单思路:求出每条过物和空间任意一点,并经过镜面反射的光线的光程,求其极值,可以得到实际反射光线.若将物放置于轴线上,即可求出像距,从而验证上述关系.
如何用费马原理证明光的反射定律 费马定理的定义是光总是走光程极值路线,一般都是极小值。对于光从A到B点的反射来说,如果反射点为C,光线走过的实际路线必然是使得ACB最短的路线,也就是入射角等于折射角。
用费马定理证明光的折射与反射定理 哈哈‘‘你问对了‘我的专业反射定理考虑由Q发出经反射面到达P的光线.相对于反射面取P的镜像对称点P’,从Q到P任一可能路径QM’P的长度与QM’P’相等.显然,直线QMP’是其中最短的一根,从而路径QMP长度最短.根据肥马原理,QMP是光线的实际路径.折射定律考虑由Q出发经折射面折射到达P的光线.作QQ’与PP’平行,故而共面,我们称此平面为Ⅱ.考虑从Q经折射面上任一点M’到P的光线QM’P.由M’作垂足Q’、P’联线的垂线M’M,不难看出QM’,PM’,既光线QM’P在Ⅱ平面上的投影QMP比QM’P本身的光程更短.可见光程最短的路径应在Ⅱ平面内寻找.假设QQ’=h1,PP'=h2,Q’P’=P,Q'M=x,则(QMP)=n1QM+n2MP既 d(QMP)/dx=n1x/根号(h1*h1+x*+)-n2(p-x)/根号(h2*he+(p-x)*(p-x)由光程的最小条件d(MQP)/dx=0 可得 n1sini1=n2sini2
如何用费马原理证明光的反射定律? 如何用费马原理证明光的反射定律的回答如下: 如何用费马原理证明光的反射定律的回答如下:1、方法:1)首先是假设是在均匀介质中,只有反射光线在入射光线和法线的平面内。
怎样用时间最短原理(费马提出的)证明光的折射定律? 费马原理对折射定律的证明假设光从介质n_1入射到介质n_2.在两个介质的交界面上取一条直线?为x轴,法线为y轴,建立直角坐标系?在入射光线上任取一点A(x_1,y_1),光线与两介质交界面的交点为B(x,0),在折射.
利用费马原理证明光的反射定律及折射定律 对反射定律的证明:费马定理的定义是光总是走光程极值路线,一般都是极小值。对于光从A到B点的反射来说,如果反射点为C,光线走过。
费马定理证明光的折射定律 我搜到的费马定理都是什么几次方拆成几次方什么的,好像完全没关系。到底有多少飞马定理,证明光的。http://baike.baidu.com/view/66385.html?wtp=tt里面有更详细一点的解释
利用费马原理证明光的反射定律及折射定律 费马原理是几抄何光学中的一条重bai要原理,由此原理可证du明光在均zhi匀介质中传播时遵dao从的直线传播定律、反射和折射定律,以及傍轴条件下透镜的等光程性等。该原理说,若光线在介质中沿某一路径传播,当光线反向时,必沿同一路径逆向传播。费马原理规定了光线传播的唯一可实现的路径,不论光线正向传播还是逆向传播,必沿同一路径。因而借助于费马原理可说明光的可逆性原理的正确性。光在任意介质中从一点传播到另一点时,沿所需时间最短的路径传播。折射定律(law of refraction)或 斯涅尔定律(Snell's Law)。折射定律:光线通过两介质的界面折射时,确定入射光线与折射光线传播方向间关系的定律,几何光学基本定律之一。如图,入射光线与通过入射点的界面法线所构成的平面称为入射面,入射光线和折射光线与法线的夹角分别称为入射角和折射角,以θ1和θ2表示。折射定律为:①折射光线在入射面内。②入射角和折射角的正弦之比为一常数,用n21表示,即式中n12称为第二介质对第一介质的相对折射率。
如何用麦克斯韦方程组证明光学中的费马原理? 就是光的传播那一套,基本上是波动光学就够了,Maxwell的东西不会多。先看看单色波吧,单色波可以写作,…
用费马定理证明光的折射定律 反射定理考虑由Q发出经反射面到达P的光线.相对于反射面取P的镜像对称点P’,从Q到P任一可能路径QM’P的长度与QM’P’相等.显然,直线QMP’是其中最短的一根,从而。