ZKX's LAB

第四章 抛物型方程的差分法 (本小题满分14分) 已知抛物线上一点到其焦点F的距离为4;椭圆的离心率,且过抛...

2021-03-08知识9

点差法是怎么用的?? “点差法”,即差分法,适用于解决直线与圆锥曲线相交的弦的中点问题,回避了使用运算量较大的韦达定理,从而转化为与直线斜率有关的问题。它的本质是两平行方程的变形,如。

如何从物理意义上理解NS方程? 希望有大神能形象的用通俗易懂的方法描述一下NS方程的对流项,扩散项,源项等。是否对于不同的项需要使用…

目前数值计算领域中有限差分法和有限元法是很常用的方法,请问这两种方法有什么区别呢?如果一个偏微分方程能能用有限差分求解,那该方程同时还能用有限元法求解吗?谢谢everease先生的指教.我想做的是一个复杂过程的模拟.这其中涉及到电磁场,流场,和温度场,但是手上的软件为CFD软件,采用的是差分法求解;我想做二次开发,采用原软件的计算模块(FDM),计算温度场(抛物型)和电磁场(椭圆型),是不是仅仅是

高手,请问如何用有限差分法求解抛物线型的偏微分方程,用matlab,能告诉我具体的编程程序了,万分感谢了~~~急 不懂… ?X/?t=?/?z(Deff?X/?z);0<;z With the following conditions: Initial:t=0;0<;z;X=X0 Boundary:t>;0;z=0;?X/?z=0 t>;0;z=L;X=Xeq 这是我要求的偏微分方程,谢谢。

第四章 抛物型方程的差分法 (本小题满分14分) 已知抛物线上一点到其焦点F的距离为4;椭圆的离心率,且过抛...

求 MATLAB 程序, 用 有限差分法 解 椭圆偏微分方程. 题目如图. 建议看看这个:利用有限差分和MATLAB矩阵运算直接求解二维泊松.http://wenku.baidu.com/view/b840ef51ad02de80d4d8400e.html和你要的原理是完全一样的.MATLAB程序。.

点差法 是怎么用的 1,“7a686964616fe4b893e5b19e31333264626464点差法”,即差分法,适用于解决直线与圆锥曲线相交的弦的中点问题,回避了使用运算量较大的韦达定理,从而转化为与直线斜率有关的问题。它的本质是两平行方程的变形,如对椭圆:x1^2+y1^2=1.1,x2^2+y2^2=1.2,一式减二式,变形得:(y1-y2)/(x1-x2)=-b^2(x1+x2)/a^2(y1+y2),即斜率k=-b^2(x1+x2)/a^2(y1+y2)=-b^2x*/a^2y*,(设x*,y*为中点),同理变双曲线,抛物线,圆,但点差法只可用于解决中心在原点的圆锥曲线,(这便是点差法局限性之一了)再利用题中其他条件寻找x*,y*,k,m(直线截距)间的关系,允许保留一个未知数,多用于解决过定点问题。【注:对于存在性问题(如问到\"是否存在一定点过于直线AB?要慎用点差法(此为局限之二),因为当题中未明说直线与圆锥曲线的相交情况时,若无交点,X1,X2,Y1,Y2就没有了意义,变形式也就不成立了。故即使利用点差法解出定点(当题中相交情况不确定时),也要检验。验法一:把已知直线与圆锥曲线联立,再算判别式是否≥0,若符合,则存在;验法二:把所得弦的中点代入圆锥曲线本身的约束条件中去看是否满足,如在椭圆中弦的中点应满足x^2/a^2+y^2/b^2;双曲线中满足x^2/。

#第四章 抛物型方程的差分法

随机阅读

qrcode
访问手机版