聚类分析中,欧式距离和平方欧式距离有什么区别?
最低0.27元开通文库会员,查看完整内容>;原发布者:tranquilmiao非监督分类非监督分类:也称为聚类分析或点群分类。在多光谱图像中搜寻、定义其自然相似光谱集群的过程。它不必对影像地物获取先验知识,仅依靠影像上不同类地物光谱(或纹理)信息进行特征提取,再统计特征的差别来达到分类的目的,最后对已分出的各个类别的实际属性进行确认。目前比较常见也较为成熟的是ISODATA、K-Mean和链状方法等。遥感影像的非监督分类一般包括以下6个步骤:图1非监督分类操作流程目前非监督分类器比较常用的是ISODATA、K-Mean和链状方法。ENVI包括了ISODATA和K-Mean方法。1、影像分析大体上判断主要地物的类别数量。一般监督分类设置分类数目比最终分类数量要多2-3倍为宜,这样有助于提高分类精度。本案例的数据源为ENVI自带的Landsattm5数据Can_tmr.img,类别分为:林地、草地/灌木、耕地、裸地、沙地、其他六类。确定在非监督分类中的类别数为15。2、分类器选择ISODATA(IterativeSelf-OrgnizingDataAnalysizeTechnique)重复自组织数据分析技术,计算数据空间中均匀分布的类均值,然后用最小距离技术将剩余像元进行迭代聚合,每次迭代都重新计算均值,且根据所得的新均值,对像元进行再。
导师要求毕设用SPSS做聚类分析分别用K均值聚类和系统聚类挖掘数据,发现两种方法分类的区别在哪里怎么做导师要求毕设用SPSS做聚类分析,分别用K均值聚类和系统聚类挖掘数据,然后提了个小问题:初步研究两种聚类方法的分类界限的不同.SPSS上的快速聚类(K均值聚类)可以有最终聚类中心的表,但是系统聚类只有阶群集成员表.我不知道怎么在系统聚类时直观地看出聚类中心,因此无法比对,求怎么破