常微分方程和数学分析哪个更难! 当然是《常微分方程》更难。1、作为一般专业,将高等数学,也就是微积分,称为《数学分析》,其实是夸大其词,忽悠糊弄而已。一般只有数学系的微积分,才能称为《数学分析。
实变函数 复变函数 常微分方程 偏微分方程 随机过程的学习顺序 先学复变函数,再学常微分方程。因为微分方程都要在复数域内讨论。实变函数一般在大三学,先修课程是复变函数和数学分析。随机过程内容不了解,一般本科生大三学。偏微分方程我还没学,必须放在常微分方程后面,我记得高教出版的俄罗斯的一本偏微分教材还要求具有实变函数的基础。数学物理方程也是求解偏微分方程的入门课,同时也综合数分,高代,常微分,复变的内容,不妨先学习它后再考虑偏微分(只是建议)。复变函数可以参看李忠编写的,高教出版社,特点就是简单,如果你数学分析学得好,并学过流形上的微积分,可以参看龚sheng的《复分析导论》,中科大出版社;《常微分方程》参看丁同仁,李承治版的,也可参看王高雄等人版的,二者都不错,后者写得更易懂,另外,俄罗斯庞特里亚金的也很有特色,具备一点点高等代数的知识就能懂,可以作为国内教材的补充;实变函数北大的一本书不错,记不清作者是谁了,你可以搜哈。我不是数学类专业,随机和偏微分本科就不涉及了,也没法去评价这两种教材。
随机微分方程的求解有没有类似于常微分方程的差分法? 有,但是具体的方法不知道,我不是学微分方程数值解这个方向的。你去图书馆或网上查查相关的书籍和资料,要么问问相关的老师。上这种问题很难问明白的。
随机微分方程与常微分方程的区别与联系 随机微分方程中带有标准布朗运动B(t)那项,它是关于过程B(t)的微分(这个微分实际不再是通常意义下的微分),而常微分方程中是关于一个普通变量的微分。主要区别在这一点,因为B(t)的运算规则与普通的微分不一样。
偏微分方程与常微分方程的本质区别是? 常微分方程,描述的是一个量随一个自变量变化的规律,如位置随时间的变化规律.偏微分方程组,描述的是一个量随着2个或更多自变量变化的规律.比如温度随着时间位置的变化.这样就需要4个(分别是时间,和三个空间维度)偏.
微分方程数值方法和偏微分方程有什么区别吗? 题主想问的是常微分方程(ODE)和偏微分方程(PDE)的数值方法区别呢还是微分方程这个领域和微分方程数值…
为什么一般解微分方程的概念不适用于随机微分方程? 然而,随机过程函数本身的导数不可定义,是故一般解微分方程的概念不适用于随机微分方程
什么是随机微分方程,求举个实际例子 微分方程中含有随机参数或随机过程(函数)或随机初始值或随机边界值的叫随机微分方程:举个简单的例子:1)my'‘+cy'+ky=f(t)f(t)-平稳。
线性微分方程与非线性微分方程的区别 对于一阶微分方程,形如:y'+p(x)y+q(x)=0的称为\"线性例如:y'=sin(x)y是线性的但y'=y^2不是线性的注意两点:(1)y'前的系数不能含y,但可以含x,如:y*y'=2 不是线性的x*y'=2 是线性的(2)y前的系数也不能含y,但可以含x,如:y'=sin(x)y 是线性的y'=sin(y)y 是非线性的(3)整个方程中,只能出现y和y',不能出现sin(y),y^2,y^3等等,如:y'=y 是线性的y'=y^2 是非线性的
什么是随机微分方程,求举个实际例子 微分方程中含有随机参数或随机过程(函数)或随机初始值或随机边界值的叫随机微分方程:举个简单的例子:1)my'‘+cy'+ky=f(t)f(t)-平稳随机过程的一个样本函数;求y(t);2)my'‘+cy'+ky=0 其中 N(0,1);求自由振动y(t).等等