ZKX's LAB

参考条件 极限条件 仪器的精度和最大允许误差有什么区别?

2020-07-22知识15

如何判断极限是否存在?什么样的极限不存在? 判断极限是否存在的方法是:分别考虑左右极限。极限存在的充分必要条件是左右极限都存在且相等。用数学表达式表示为:极限不存在的条件:1、当左极限与右极限其中之一不。仪器的精度和最大允许误差有什么区别? 精度是测量值与真值的接近程度。包含精密度和准确度两个方面。每一种物理量要用数值表示时,必须先要制定一种标准,并选定一种单位(unit)。标准及单位的制定,是为了沟通人与人之间对于物理现象的认识。这种标准的制定,通常是根据人们对于所要测量的物理量的认识与了解,并且要考虑这标准是否容易复制,或测量的过程是否容易操作等实际问题。最大允许误差:对给定的测量仪表,规范、规程等所允许的误差极限值。这是指在规定的参考条件下,测量仪器在技术标准、计量检定规程等技术规范上所规定的允许误差的极限值。这里规定的是误差极限值,所以实际上就是测量仪器各计量性能所要求的最大允许误差值。可简称为最大允许误差,也可称为测量仪器的允许误差限。最大允许误差可用绝对误差、相对误差或引用误差等来表述。极限存在的条件 函数极2113限存在的条件:一、单5261调有界准则.二、夹逼准则,如能找4102到比目标数列或者函数大1653而有极限的数列或函数,并且又能找到比目标数列或者函数小且有极限的数列或者函数,那么目标数列或者函数必定存在极限。拓展资料函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。参考资料::函数极限极限的和等于和的极限的使用条件是什么。 求函数的极限需要分别求左右极限吗? 求分段函数在分段点处的极限,必需分别求左右极限,观察是否相等。如果相等,则这函数在这点处有极限。极限存在的条件 最低0.27元开通文库会员,查看完整内容>;原发布者:yxsyqk1103函数极限存在的2113条件重点难点1.归结原则也5261称为海涅定理,它的意义在于把函数极限4102归结为数列1653极限问题来处理,从而我们可以利用归结原则和数列极限的有关性质来证明上一节中所述的函数极限所有性质.2.单调有界定理是判定极限是否存在的一个重要原则,同时也是求极限的一个有用的方法.一般情形,运用单调有界定理研究变量极限时,需要首先利用单调收敛定理判定极限的存在性,然后在运用运算法则求这个极限.3.柯西准则是函数极限存在的充要条件.函数极限的柯西准则是以数列的柯西准则为基础的.该准则在数列极限、极限和广义积分理论中,占据了重要的地位.因此应当认真理解柯西准则,并能用柯西准则讨论某些比较简单的问题.基本内容在讨论数列极限存在条件时,我们曾向大家介绍过判别数列极限存在的“单调有界定理”和“柯西收敛准则”.我们说数列是特殊的函数,那么对于函数是否也有类似的结果呢?或者说能否从函数值的变化趋势来判断其极限的存在性呢?本节的结论只对这种类型的函数极限进行论述,但其结论对其它类型的函数极限也是成立的。首先介绍一个很主要的结果—海涅(Heine)定理(归结原则)。一、归结。求极限时使用等价无穷小的条件 求极限时,2113使用等价无穷小的条件:52611、被代换的量4102,在取极1653限的时候极限值为0;2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。扩展资料求极限基本方法有:1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入;2、无穷大根式减去无穷大根式时,分子有理化,然后运用(1)中的方法;3、运用两个特别极限;4、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。它不是所向无敌,不可以代替其他所有方法,一楼言过其实。5、用Mclaurin(麦克劳琳)级数展开,而国内普遍误译为Taylor(泰勒)展开。6、等阶无穷小代换,这种方法在国内甚嚣尘上,国外比较冷静。因为一要死背,不是值得推广的教学法;二是经常会出错,要特别小心。7、夹挤法。这不是普遍方法,因为不可能放大、缩小后的结果都一样。8、特殊情况下,化为积分计算。9、其他极为特殊而不能普遍使用的方法。函数在某2113一点极限存在的充要条件是函数左极5261限和右极限在4102某点都存在且相等。如果1653左右极限不相同、或者不存在。则函数在该点极限不存在。即从左趋向于所求点时的极限值和从右趋向于所求点的极限值相等。极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值”(当然也可以用其他符号表示)。扩展资料:极限的思想:极限的思想是近代数学的一种重要思想,数学分析就是以极限概念为基础、极限理论(包括级数)为主要工具来研究函数的一门学科。所谓极限的思想,是指“用极限概念分析问题和解决问题的一种数学思想”。用极限思想解决问题的一般步骤可概括为:对于被考察的未知量,先设法正确地构思一个与它的变化有关的另外一个变量,确认此变量通过无限变化过程的’影响‘趋势性结果就是非常精密的约等于所求的未知量;用极限原理就可以计算得到被考察的未知量的结果。极限思想是微积分的基本思想,是数学分析中的一系列重要概念,如函数的连续性、导数(为0得到极大值)以及定积分等等都是借助于极限来定义的。如果要问:“数学分析是一门什么学科?那么可以概括地说:“数学分析就是用极限思想来研究函数的一门学科,并且计算结果误差小到。求极限的所有方法,要求详细点 基本方法有:1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入;2、无穷大根式减去无穷大根式时,分子有理化,然后运用(1)中的方法;3、运用两个特别极限;4、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。它不是所向无敌,不可以代替其他所有方法,一楼言过其实。5、用Mclaurin(麦克劳琳)级数展开,而国内普遍误译为Taylor(泰勒)展开。6、等阶无穷小代换,这种方法在国内甚嚣尘上,国外比较冷静。因为一要死背,不是值得推广的教学法;二是经常会出错,要特别小心。7、夹挤法。这不是普遍方法,因为不可能放大、缩小后的结果都一样。8、特殊情况下,化为积分计算。9、其他极为特殊而不能普遍使用的方法。拓展资料极限思想是微积分的基本思想,是数学分析中的一系列重要概念,如函数的连续性、导数(为0得到极大值)以及定积分等等都是借助于极限来定义的。如果要问:“数学分析是一门什么学科?那么可以概括地说:“数学分析就是用极限思想来研究函数的一门学科,并且计算结果误差小到难于想像,因此可以忽略不计。参考资料:-极限

#函数极限#无穷大

随机阅读

qrcode
访问手机版