ZKX's LAB

利用费马原理验证 利用费马原理画图发证明反射定律

2020-12-01知识13

利用费马原理画图发证明反射定律 光线从A经过B反射到C,作A的镜像A',ABC=A'BC,根据费马原理ABC应当最小,所以A'、B、C应当共线,所以入射角等于反射角。

利用费马原理验证 利用费马原理画图发证明反射定律

如何运用费马原理证明光的反射定律和光的折射定律? 运用2113费马原理证明光在反射和折射5261的过程中从一点到另一点所用4102的时间或走的路程比其他任何路1653径都要短。反射时,可以作出光源关于反射面的对称点,再将它和反射后经过的任意一点连起来,则这条线段的长度就是光所走的路程,可以用三角形两边之和大于第三边的原理证明光只有在这条线段与反射面之间的交点反射走的路程才最短,而在这点反射时,入射角和出射角是相等的。折射的道理一样,只不过要考虑光速的变化,你可以通过相应地按光在两种介质中的速度比例改变光在一种介质中的路程,再同样地通过几何学推证。反射定理考虑由Q发出经反射面到达P的光线.相对于反射面取P的镜像对称点P’,从Q到P任一可能路径QM’P的长度与QM’P’相等.显然,直线QMP’是其中最短的一根,从而路径QMP长度最短.根据肥马原理,QMP是光线的实际路径.折射定律考虑由Q出发经折射面折射到达P的光线.作QQ’与PP’平行,故而共面,我们称此平面为Ⅱ.考虑从Q经折射面上任一点M’到P的光线QM’P.由M’作垂足Q’、P’联线的垂线M’M,不难看出QM’,PM’,既光线QM’P在Ⅱ平面上的投影QMP比QM’P本身的光程更短.可见光程最短的路径应在Ⅱ平面内寻找.假设QQ’=h1,PP'=h2,。

利用费马原理验证 利用费马原理画图发证明反射定律

如何证明费马大定理?

利用费马原理验证 利用费马原理画图发证明反射定律

反射定律是怎样符合费马原理的 光在介质中沿着光程为极值的路径传播,反射是按最小光程路径传播,(因为没有极大值)假设是在均匀介质中首先只有反射光线在入射光线和法线的平面内才可能按照最小光程传播,因为任何反射光线路径都不小于它在此平面内的投影.然后可以设入射光线和反射光线分别过A、B点,在反射面同侧,作C点与A点沿反射面对称,连接BC交反射面于D点,易证AD=CD,然后由于两点之间直线最短,可以知道ACB是最短光程路线,而且符合反射定律

如何用马吕斯定理或费马原理验证光的反射定律与折射定律? 费马原理对折射定律的证明假设光从介质n_1入射到介质n_2.在两个介质的交界面上取一条直线?为x轴,法线为y轴,建立直角坐标系?在入射光线上任取一点A(x_1,y_1),光线与两介质交界面的交点为B(x,0),在折射光线上任取一点C(x_2,y_2).AB之间的距离为\\sqrt,BC之间的距离为\\sqrt.由费马原理可知,光从A点经过B点到辠C点,所用的时间t 应该是最短的.t=\\left(\\frac\\right)(ABn_1+BCn_2),t 取最小值的条件是\\frac=0.经整理得 \\frac=\\frac,\\sin\\theta_1=\\frac 且 \\sin\\theta_2=\\frac 即 n_1\\sin\\theta_1=n_2\\sin\\theta_2(Snell's law)

如何用费马原理证明光的反射定律 费马定理的定义是光总是走光程极值路线,一般都是极小值。对于光从A到B点的反射来说,如果反射点为C,光线走过的实际路线必然是使得ACB最短的路线,也就是入射角等于折射角。

费马原理怎么解释,我不是问怎么证明,而是为什么会有时间最短的效应 你习惯于用起因和结果2113来思考折射:光照5261到水面上是起4102因,方向的变化是结果1653。但费马定理听上去很古怪,因为它以目的的形式来描述光的行为。它就像是光线的指挥官,‘你应该将抵达目的的时间最小化或最大化。假若按人类行为学来说,光得检验每条可能的路线并计算每条得花多少时间,光线得知道目的在哪儿。假如目的地在某某其他地方,最快的路线就会不同,计算沿着一条假想的路线需多长时间也需要关于在这条路线上有什么东西的信息,比如水面在哪?在光开始移动前,它得事先知道所有这一切,光线不能沿着老路前进,然后再在后来返回。因为引起这样行为的路线不是最快的。在一开始光就已经做好了全部的计算在光线能够选择它移动的方向前,它已经知道它最终会在那里结束。

利用费马原理证明光的反射定律及折射定律 费马原理是几何光学中的一条重要原理,由此原理可证明光在均匀介质中传播时遵从的直线传播定律、反射和折射定律,以及傍轴条件下透镜的等光程性等。该原理说,若光线在介质中沿某一路径传播,当光线反向时,必沿同一路径逆向传播。费马原理规定了光线传播的唯一可实现的路径,不论光线正向传播还是逆向传播,必沿同一路径。因而借助于费马原理可说明光的可逆性原理的正确性。光在任意介质中从一点传播到另一点时,沿所需时间最短的路径传播。折射定律(law of refraction)或 斯涅尔定律(Snell's Law)。折射定律:光线通过两介质的界面折射时,确定入射光线与折射光线传播方向间关系的定律,几何光学基本定律之一。如图,入射光线与通过入射点的界面法线所构成的平面称为入射面,入射光线和折射光线与法线的夹角分别称为入射角和折射角,以θ1和θ2表示。折射定律为:①折射光线在入射面内。②入射角和折射角的正弦之比为一常数,用n21表示,即式中n12称为第二介质对第一介质的相对折射率。

如何用费马原理证明光的反射定律 费马定理的定义是光总是走光程极值路线,一般都是极小值。对于光从A到B点的反射来说,如果反射点为C,光线走过的实际路线必然是使得ACB最短的路线,也就是入射角等于折射角,入射光线和反射光线对称的路线,即为折射定律。

怎样用时间最短原理(费马提出的)证明光的折射定律? 费马原理对折射定律的证明假设光从介质n_1入射到介质n_2.在两个介质的交界面上取一条直线?为x轴,法线为y轴,建立直角坐标系?在入射光线上任取一点A(x_1,y_1),光线与两介质交界面的交点为B(x,0),在折射.

随机阅读

qrcode
访问手机版