ZKX's LAB

抛物型方程在生态学中的应用

2020-07-16知识12

学霸帮帮忙,y的平方=2px,这个抛物线方程的图像在坐标轴上该怎么画? 新闻 网页 微信 知乎 图片 视频 明医 英文 问问 更多? 我要提问 问题分类 特色 搜狗指南 问豆商城 ? 2020SOGOU.COM 京ICP证050897号抛物线的开口有几个方向,方程是什么? 二次项的系数为正时,开口向上;二次项的系数为负时,开口向下。1.标准方程右开口抛物线:y^2=2px(p>0)左开口抛物线:y^2=2px(p0)下开口抛物线:y=x^2/2p(p0)在抛物线y^2=2px中,焦点是(p/2,0),准线l的方程是x=-p/2;在抛物线y^2=-2px 中,焦点是(-p/2,0),准线l的方程是x=p/2;在抛物线x^2=2py 中,焦点是(0,p/2),准线l的方程是y=-p/2;在抛物线x^2=-2py中,焦点是(0,-p/2),准线l的方程是y=p/2。椭圆,圆,双曲线,抛物线各方程式的通式是什么, ^1.椭圆:x^2/a^2+y^2/b^2=1 焦点(c,0)(-c,0)椭圆的标准方程有两种,取决于焦点所在的坐标轴:1)焦点在X轴时,标准方程为:x^2/a^2+y^2/b^2=1(a>b>0)2)焦点在Y轴时,标准方程为:x^2/b^2+y^2/a^2=1(a>b>0)其中a>0,b>0。a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们的一半分别叫椭圆的长半轴和短半轴或半长轴和半短轴)当a>b时,焦点在x轴上,焦距为2*(a^2-b^2)^0.5,焦距与长.短半轴的关系:b^2=a^2-c^2,准线方程是x=a^2/c和x=-a^2/c又及:如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx^2+ny^2=1(m>0,n>0,m≠n)。既标准方程的统一形式。椭圆的面积是πab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ,y=bsinθ标准形式的椭圆在x0,y0点的切线就是:xx0/a^2+yy0/b^2=12.圆:x^2+y^2+Dx+Ey+F=0 圆心(-D/2,-E/2)X^2+Y^2=1 被称为1单位圆x^2+y^2=r^2,圆心O(0,0),半径r;(x-a)^2+(y-b)^2=r^2,圆心O(a,b),半径r。3.双曲线:x^2/a^2-y^2/b^2=1 焦点(c,0)(-c,0)在平面直角坐标系中,二元二次方程h(x,y)=ax^2+bxy+cy^2+dx+ey+f=0满足以下怎样判断微分方程的线性与非线性 对于线性2113微分方程,其中只能出现函数本身,5261以及函数4102的任何阶次的导函数;函数本身跟所有的导1653函数之间除了加减之外,不可以有任何运算;函数本身跟本身、各阶导函数本身跟本身,都不可以有任何加减之外的运算;不允许对函数本身、各阶导函数做任何形式的复合运算,例如:siny、cosy、tany、lny、lgx、y2、y3。若一个微分方程不符合上面的条件,就是非线性微分方程。扩展资料线性方程:在代数方程中,仅含未知数的一次幂的方程称为线性方程。这种方程的函数图象为一条直线,所以称为线性方程。可以理解为:即方程的最高次项是一次的,允许有0次项,但不能超过一次。比如ax+by+c=0,此处c为关于x或y的0次项。微分方程:含有自变量、未知函数和未知函数的导数的方程称为微分方程。如果一个微分方程中仅含有未知函数及其各阶导数作为整体的一次幂,则称它为线性微分方程。可以理解为此微分方程中的未知函数y是不超过一次的,且此方程中y的各阶导数也应该是不超过一次的。参考资料百度百科-线性微分方程学霸帮帮忙,y的平方=2px,这个抛物线方程的图像在坐标轴上该怎么画? 微分方程的特征方程怎么求的? 一阶线性微分方程解的结构是什么 对于一2113阶齐次线性微分方程,其通解形式为:5261对于一阶非齐4102次线性微分方程,其通1653解形式为:微分方程指含有未知函数及其导数的关系式。解微分方程就是找出未知函数。扩展资料形如y'+P(x)y=Q(x)的微分方程称为一阶线性微分方程,Q(x)称为自由项。一阶,指的是方程中关于Y的导数是一阶导数。线性,指的是方程简化后的每一项关于y、y'的次数为0或1。通常微分方程在很多学科领域内有着重要的应用,自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性的研究、化学反应过程稳定性的研究等。这些问题都可以化为求常微分方程的解,或者化为研究解的性质的问题。应用常微分方程理论已经取得了很大的成就,但是,它的现有理论也还远远不能满足需要,还有待于进一步的发展,使这门学科的理论更加完善。百度百科-一阶线性微分方程抛物线切线方程 对抛物线方程关于x求导 yy'=p,(用了隐函数求导),即y'=p/y切线方程:y-y0=y'(x-x0)即 y-yo=p/y*(x-x0)化简 即得y0y=p(x+x0)我在你的那道问题中 回答了抛物线中应用韦达定理的问题 消X比较简单,得关于y的一元二次方程,△≥0时,y1+y2=-b/a,y1y2=c/a.如果是关于x的一元二次方程,△≥0时,x1+x2=-b/a,x1x2=c/a.用导数求切线方程 假设有一抛物线y=2x^2,求过(1,2)的切线方程.首先对函数求导得到y'=4x,然后把x=1带进去得到y'=4=k也就是斜率,用直线方程的两点式(y-2)=k(x-1),把k代进去,整理得到y=4x-2

#抛物线#韦达定理#导数#微分方程

随机阅读

qrcode
访问手机版