点到直线的距离公式如何推导? 设:直线方程y=ax+b 点的坐标(p,q)考虑到要求点到直线的距离,与过该点与已知直线垂直的直线重合,所以先求过已知点与已知直线垂直的直线方程:y=(-1/k)x+(p/k+q)联立两方程求得交点坐标,然后再用平面间两点距离公式求距离.
怎么求椭圆上一点到直线的距离 用点到直线距离公式 d=∣Ax+By+C∣/√(A2+B2).如果求椭圆上点到直线距离的最大(小)值,可设椭圆上的点为参数形式,即x'=aCOSθ,y=bSinθ,代入d,用三角函数方法求最值.
点到直线距离公式证明方法 设点A(m.n)到直线y=kx+b的距离首先,求过点A且与直线y=kx+b垂直的直线方程过点A且与直线y=kx+b垂直的直线方程设为y=-x/k+c【因为两直线垂直,其斜率乘积为-1,即k1k2=-1】所以有n=-m/k+b=>;b=n+m/k=(nk+m)/k所以过A点且垂直y=kx+b的直线方程为y=-x/k+(nk+m)/k其次,求这两条直线的交点坐标,即联解这两个直线方程直线y=kx+b与直线y=-x/k+(nk+m)/k的交点坐标kx+b=-x/k+(nk+m)/k解出x,然后解出y即是交点坐标,假设为B点(p,q)最后,根据两点距离公式求出点A到y=kx+b的距离AB|=√[(m-p)2+(n-q)2]
如何推导点到直线间的距离公式? 假设直线L0为:AX+BY+C=0,平面上非在线上的任意一点为M(X0,Y0)过点M作垂直于L0的直线L1交L0于点N(X1,Y1),点M到直线L0的距离即为线段MN的长度则有:L1的直线方程为:Y-Y0=-1/A*(X-X0),且有X-X0/Y-Y0=-1/A联立L1与L.