ZKX's LAB

初等函数在其定义域内一定可导,对么? 初等函数在定义域内处处可导

2020-10-18知识21

关于初等函数的性质,前辈们看我说得对不对 不对的,就拿反比例函数说,在其定义域内,不是连续的,是由2条曲线构成的

初等函数在其定义域内一定可导,对么? 初等函数在定义域内处处可导

基本初等函数在起定义域内都是可导的吗? 还有,初等函数在其定义域内都是可导的吗?(初等函数的定义:由基本初等函数经过有限次的四则运算和复合…

初等函数在其定义域内一定可导,对么? 初等函数在定义域内处处可导

初等函数在定义域内一定可导? “初等函数在定义域内一定可导”这句话是错的,很容易举出例子,如你的 f(x)=x^(1/3),是初等函数,但其在 x=0 不可导(实际上有无穷导数);而初等函数 y=√(x^2)=|x|在 x=0 就真的不可导.顺.

初等函数在其定义域内一定可导,对么? 初等函数在定义域内处处可导

初等函数在其定义域内一定可导吗? 初等函数在定义域内一定连续,但不一定可导。举例如下:y=|x|就是y=sqrt(x^2),它是基本初等函数y=sqrt(u)和u=x^2的复合函数,是初等函数。(其中x^2表示x的平方,sqrt(x)表示x的算术平方根)但y=|x|在x=0点处的左导数为-1,右导数为1,因此该函数在x=0处不可导。另举反例:y=x^(1/3)(即x的立方根)是基本初等函数,但在x=0处不可导。

初等函数在定义域内一定可导? “初等函数在定义域内一定可导”这句话是错的,很容易举出例子,如你的f(x)=x^(1/3),是初等函数,但其在 x=0 不可导(实际上有无穷导数);而初等函数y=√(x^2)=|x|在 x=0 就真的不可导。顺便提一句,“基本初等函数在定义域内可导”,“初等函数在定义域内连续”是正确的。

#初等函数#定义域

随机阅读

qrcode
访问手机版