已经知道位矢运动方程求切向加速度 “算出切向的单位矢量 T,然后然后将总的加速度和切向单位矢量相乘”我只能在图形上简单说明,一个向量与一个单位向量的乘积,实际是这个向量在这个单位向量上的投影,(数学上向量就是矢量).
平面的法向矢量方向如何理解? 矢量都有方向,方向就是表示起点和终点.矢量都可以计算.
已知平面的方程,怎么求平面的法向量? 变换方程e68a8462616964757a686964616f31333431363537为一般式Ax+By+Cz+D=0,平面的法向量为(A,B,C)。证明:设平面上任意两点P(x1,y1,z1),Q(x2,y2,z2)满足方程:Ax1+By1+Cz1+D=0,Ax2+By2+Cz2+D=0PQ的矢量为(x2-x1,y2-y1,z2-z1),该矢量满足A(x2-x1)+B(y2-y1)+C(z2-z1)=0矢量PQ⊥矢量(A,B,C)平面上任意直线都垂直于矢量(A,B,C)矢量(A,B,C)垂直于该平面平面的法向量为(A,B,C)扩展资料:计算对于像三角形这样的多边形来说,多边形两条相互不平行的边的叉积就是多边形的法线。用方程ax+by+cz=d表示的平面,向量(a,b,c)就是其法线。如果S是曲线坐标x(s,t)表示的曲面,其中s及t是实数变量,那么用偏导数叉积表示的法线为如果曲面S用隐函数表示,点集合(x,y,z)满足 F(x,y,z)=0,那么在点(x,y,z)处的曲面法线用梯度表示为如果曲面在某点没有切平面,那么在该点就没有法线。例如,圆锥的顶点以及底面的边线处都没有法线,但是圆锥的法线是几乎处处存在的。通常一个满足Lipschitz连续的曲面可以认为法线几乎处处存在。
这个切向的单位矢量一般我们写的时候是怎么写的? 希腊字母:就好像 小写字母t,把上面的头 去掉。也有的教材记作:et 的。主法向单位矢量 记作 en,副法向 记作 eb
单位法向矢量方向怎么确定