欧拉公式推导 eix=1+i x-x2/2。i x3/3。x4/4。i x5/5。(1-x2/2。x4/4。i(x-x3/3。x5/5。又因为:cos x=1-x2/2。x4/4。sin x=x-x3/3。x5/5。所以eix=cos x+i sin x刚学欧拉公式, 确实打错了,奇数项含i,偶数项不含i.有限项的泰勒级数才是在x趋近于x0时趋近函数值,也不是相等.而无穷的泰勒级数只要收敛,就是和函数值严格相等的.cos x=1-x^2/2。x^4/4。x^6/6。sin x=x-x^3/3。x^5/5。这就是三角函数的泰勒级数展开式.其实欧拉公式的这个证明就是在复数域内把指数函数展开,然后分离实部和虚部,得到两个实的泰勒级数,正好是两个三角函数欧拉公式的证明 其实,如果你仔细看书的话,凡是称为“证明”的书上都会把“证明”两个字打上引号。因为这不是逻辑上的证明,而是告诉你他们之间的关系。有些大数学家在写一些数学思想史的书籍的时候,可能会抛开逻辑而追求形式上的推导。但是要分清这不是证明。不能在考试的时候这么用。因为这是在更高的层次上看问题,不能用初学者的眼光来对待。首先指数函数是定义在实数域上的,现在要延拓到复数域上,首先要定义e^i,e^xi是什么,严格地说,这是一种定义。其次,要说明这个定义是合理的,不会与之前的基本结论有明显矛盾,微积分的书中都会给出幂级数的推导(不是逻辑上的“证明”),复变函数书上一般会给出如上的推导。但这不是逻辑的证明,而只是说明通过欧拉公式来定义的复数域上的指数函数是合理的。等开学后问问老师,他们也会强调这不是证明。不过,你这个问题我在高中是也遇到过,当时问过大学里的老师,他们页强调这不是证明。复数中的欧拉公式是如何推导的 e^ix=cosx+isinx,e是自然对数的底,i是虚数单位.e^ix=cosx+isinx的证明:因为e^x=1+x/1。x^2/2。x^3/3。x^4/4。cos x=1-x^2/2。x^4/4。x^6/6。sin x=x-x^3/3。x^5/5。x^7/7。在e^x的展开式中把x换成±ix.(±i)^2=-1,(±i)^3=?i,(±i)^4=1…e^±ix=1±ix/1。x^2/2。?ix^3/3。x^4/4。(1-x^2/2。i(x-x^3/3。所以e^±ix=cosx±isinx将公式里的x换成-x,得到:e^-ix=cosx-isinx,然后采用两式相加减的方法得到:sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.\\叫做欧拉公式.将e^ix=cosx+isinx中的x取作π就得到:e^iπ+1=0.这个也叫做欧拉公式欧拉公式如何推导出来 推导过程这三个公式分别为其省百略余项的麦克劳林公式,其中麦克劳林公式为泰勒公式的一种特殊形式在e^x的展开式中把x换成±ix.所以由此度:,然后采用两式相加减的方法得到:这两个也叫做欧拉公式。将中的x取作π就得到:这个恒等式也叫做欧拉公式,它是数学里知最令人着迷的一个公式,它将数学里最重要的几个数字联系到了一起:两个超越数:自然对数的底e,圆周率π;两道个单位:虚数单位i和自然数的单位1;以及被称为人类伟大发现之一的0。数学家们评价它是“上帝创造的公式”。扩展资料:在任何一个规则球面地版图上,用 R记区域个 数,V记顶点个数,E记边界个数,则 R+V-E=2,这就是欧拉定理权,它于 1640年由 Descartes首先给出证明,后来 Euler(欧拉)于 1752年又独立地给出证明,我们称其为欧拉定理,在国外也有人称其 为 Descartes定理。R+V-E=2就是欧拉公式。参考资料:-欧拉公式三角形中欧拉公式的推导过程 已知三角形ABC中,外接圆圆心O,半径R.内接圆圆心I,半径r.设d为O到I的距离.求证:d2=R(R-2r).设角OAB=q,r=(R+d)sinq,r+d=Rcos2q再由cos2q=1-2(sinq)2,得到(d+R+r)[d2-R(R-2r)]=0因为OI 作业帮用户 2016-11-25 举报欧拉公式的证明过程谁知道 用拓朴学方法证明欧拉公式 尝欧拉公式:对于任意多面体(即各面都是平面多边形并且没有洞的立体),假 设F,E和V分别表示面,棱(或边),角(或顶)的个数,那么 F-E+V=2.试一下用拓朴学方法证明关于多面体的面、棱、顶.
随机阅读
- 【药品说明书】注射用培美曲塞二钠 齐鲁制药 培美曲塞二钠
- 魔兽世界技能栏里的技能怎么把它取消它所在的位置 魔兽世界如何锁定技能栏
- 合肥大学生兼职家教 你好,我是一名在校大学生,做家教兼职的时候
- 也能干什么 我能干什么?
- 取得初级职称后更改姓名 我是一名已经取得初级士职称而且在这个岗位工作7年的护士,我所学的专业是临床医学,为什么不给我考初级师
- 如果可以,你觉得跟哪个皇帝打天下最幸福? 舞阳县民兵连
- 求教玉器鉴赏。。。 东戴河水云轩渔家院
- 乌鸦还能用什么办法喝到水 小乌鸦还可以怎么喝到水
- 学做油炸食品小果子 花式油炸果子
- 你是如何看待学生在校抽烟现象的,并为学校的教育和管理提出自己的建议。 违反素质教育的分析与思考
- 1 自清洗过滤器 2超滤膜 超滤和反渗透能共用一个清洗过滤器吗
- 什么是一个中心 三重防护 等保 边界防护设备是什么
- 哈尔滨民南街 哈尔滨桥南街二十号在哪
- 问一下我是十级伤残工资6000一个月能有多少陪多少 四会燃气热电冷联产项目
- 在美国买苹果正版的MP4和笔记本电脑会比中国苹果正版店便宜多少? 纽约买苹果电脑购物税
- 如何查询涉及饮用水卫生安全产品卫生许可批件 涉水产品批件查询
- 连梁钢筋锚到暗柱的锚固长度是多少 暗梁钢筋锚固
- 啦啦啦,啦啦啦,我是卖报的小行家,那歌的歌词 卖报的小行家几岁
- 今年濮阳市市区高中的分数线是多少?考上几个清华、北大的? 濮阳地区哪个高中最好
- 如何看待今年雨果奖评选《三体3:死神永生》惜败《方尖碑之门》? 去沙特打工的壮工是干什么的