ZKX's LAB

费马原理的原理 费马原理什么情况下使用

2020-10-16知识27

光是如何知道哪条路线最快的,费马原理是不是违背常理呢?

费马原理的原理 费马原理什么情况下使用

什么是费马原理?

费马原理的原理 费马原理什么情况下使用

费马(Fermat)原理是地震波射线理论中的重要原理。它阐明在一般情况下波动沿一条运行时间最短的路径传播。这条路径正是垂直于波前面的路径,即射线路径。因此,费马原理从射线角度也可以说,波沿射线传播的时间最短。严格地证明费马原理需要用到变分法,这儿可以利用泊松公式作一简单地证明。假设在t1 时刻波的扰动占据着由Q面包围的某个区域W(图1-3-4),要确定在W区域外面某一点M的波前到达时t。为此利用泊松公式,将M点作为中心,以逐渐增大的r为半径作许多同心球面,r=r1,r2,…,rk,…,rn。对于小的球半径r1 来说,扰动尚未到达球面S1,故函数在S1上的平均值为零,说明该时刻在M点没有扰动。当r增大,球面也增大,其中总有一个球面Sk与扰动区W在N点首先相切,且此球面半径rk=MN。此时球面上的函数φ和的平均值不为零,因为Sk面上已经有扰动存在。说明在相应时刻于M点处首先发现扰动。由于MN是球半径,是从M点到扰动区域W的最短距离,于是对均匀介质来说,波沿这条线段传播的时间为最小。按上述定义,该线段就是射线,因为它垂直于波前面,得出结论:波沿射线传播的旅行时间和沿任何其他路径传播的时间比较起来是最小的。这就是费马的最小时间原理。这。

费马原理的原理 费马原理什么情况下使用

为什么费马大定理在数学史上的地位如此重要? Fermat's Last Theorem本问题已经加入新闻专题>;>;那些年,我们一起被「数学证明」支配过的恐…

费马原理是什么 费马原理是几何光学中的一条重要原理,由此原理可证明光在均匀介质中传播时遵从的直线传播定律、反射和折射定律,以及傍轴条件下透镜的等光程性等.光的可逆性原理是几何光学中的一条普遍原理,该原理说,若光线在介质中沿某一路径传播,当光线反向时,必沿同一路径逆向传播.费马原理规定了光线传播的唯一可实现的路径,不论光线正向传播还是逆向传播,必沿同一路径.因而借助于费马原理可说明光的可逆性原理的正确性.光在任意介质中从一点传播到另一点时,沿所需时间最短的路径传播.

费马原理:光线在两点间的实际路径是使所需的传播时间为极值的路径.那么什么时候光传播走极大值 首先,我要表示,这个问题问的好啊.其次,我推荐,如果你对光学有兴趣的话,可以去读一读外文著作《Optics》(By Eugene Hecht)或者它的中译本也行(当然,原汁原味的最好)(这本书,应该可以说对于光学的初学者来说是最适合不过了,里面的原理的阐释是相当的浅显易懂,比国内的很多所谓的专家写的光学著作不知要高出多少倍),在这本书的第三章、第五节(3.5)(英文版的,中文版我就不知道具体章节了),有专门讲费马定理,应该说,这一节对你的这个问题也进行了很好的阐述.这里我还是大致说一下此书对于你的这个问题的一些看法吧(可能我说的也不一定清楚,但详细的可以参考此书):(越说越觉得我要说的很多,你还是耐心看吧,首先:表示一下对你的这个问题的结论:“光线在两点之间的实际路径是所需传播时间为极值的路径”,因而,也就是说,光也有可能走路径的极大值.我先对此结果表示肯定.接下来说一些不是很废的废话:1.费马定律的本身表述不是像你上面所述的那样的,它应该表述为“光是沿着光程为极值的路径(也即光程的变分是稳定的,为零)传播的”(这应该可以说是“费马定律”的现代表述形式,与之对应的经典的表述形式就是“光沿着光程为极小值的路径传播”).注意,光程为极值和。

费马原理的原理

费马原理是什么 地震学中的2113费马原理:地震波沿射线传5261播的旅行时和沿其他路4102径传播的旅行时相比1653为最小,亦是波沿旅行时最小的路径传播。光学中的费马原理:光线在两点间的实际路径是使所需的传播时间为极值的路径。在大部分情况下,此极值为最小值,但有时为最大值,有时为恒定值。费马原理对折射定律的证明假设光从介质n_1入射到介质n_2。在两个介质的交界面上取一条直线为x轴,法线为y轴,建立直角坐标系;在入射光线上任取一点A(x_1,y_1),光线与两介质交界面的交点为B(x,0),在折射光线上任取一点C(x_2,y_2)。AB之间的距离为\\sqrt,BC之间的距离为\\sqrt。由费马原理可知,光从A点经过B点到C点,所用的时间t 应该是最短的。t=\\left(\\frac\\right)(ABn_1+BCn_2),t 取最小值的条件是\\frac=0。经整理得 \\frac=\\frac,\\sin\\theta_1=\\frac 且 \\sin\\theta_2=\\frac 即 n_1\\sin\\theta_1=n_2\\sin\\theta_2(Snell's law)

对于‘光学中的费马原理’如何理解呢? 费马引理,最短的路径是传播的时间最短.就像你有从A地到B地,有两条路,一条直线距离最短,但只能步行,一条很长,但可以坐车去,这样长路却省时间.费马引理有点类似这个问题.

费马原理怎么解释,我不是问怎么证明,而是为什么会有时间最短的效应 你习惯于用起因和结果2113来思考折射:光照5261到水面上是起4102因,方向的变化是结果1653。但费马定理听上去很古怪,因为它以目的的形式来描述光的行为。它就像是光线的指挥官,‘你应该将抵达目的的时间最小化或最大化。假若按人类行为学来说,光得检验每条可能的路线并计算每条得花多少时间,光线得知道目的在哪儿。假如目的地在某某其他地方,最快的路线就会不同,计算沿着一条假想的路线需多长时间也需要关于在这条路线上有什么东西的信息,比如水面在哪?在光开始移动前,它得事先知道所有这一切,光线不能沿着老路前进,然后再在后来返回。因为引起这样行为的路线不是最快的。在一开始光就已经做好了全部的计算在光线能够选择它移动的方向前,它已经知道它最终会在那里结束。

#射线#费马原理

随机阅读

qrcode
访问手机版