已知方向向量,如何求方向余弦?
已知方向向量,如何求方向余弦? 方向(x,y,z)的方向余弦(x,y,z)/√(x^2+y^2+z^2)也就是把它单位化就是了所以 {1,4,-8)的方向余弦是(1,4,-8)/9
方向余弦怎么求
过定点,方向余弦已知,如何求直线方程 如果是方向向量则是(x-x0)/a=(y-y0)/b
方向余弦怎么求 设:A(x1,y1,z1),B(x2,y2,z2).向量AB的方向余弦={(x2-x1)/d,(y2-y1)/d.(z2-z1)/d} 其中,d=|AB|=√[(x2-x1)2+(y2-y1)2+(z2-z1)2](x2-x1)/d=cos。
什么是向量的方向余弦,方向角, 这是空间向量的一个基本概念问题.设向量a={x,y,z},向量a°是向量a的单位向量,a°|=1.则 a°=(cosα)i+(cosβ)j+(cosγ)k,式中,i,j,k 是坐标单位向量;式中,α,β,γ就叫做向量的方向角;cosα,cosβ,cosγ就叫做方向余弦.
高数题,求平面法线的方向余弦,求详解过程,急!!! 设一平面平行于已知直线2x-z=0和x+y-z 解答:已知直线2113是平面2x-z=0和x+y-z+5=0的交线,这两5261个平面的法向量分别为:s1=(2,0,-1),s2=(1,1,-1),故4102该直线的方向向量为:s=s1×s2=i+j+2k=(1,1,2)又,1653已知平面7x-y+4z+3=0的法向量为n1=(7,-1,4)而,所求平面的法向量既垂直于s又垂直于n1,所以,所求平面的法向量n2=s×n1=-6i+10j-8k=(-6,10,-8)因此,该平面法向量n2的方向余弦为:cosα=(-6)/√(6^2+10^2+8^2)=-(3√2)/10cosβ=10/√(6^2+10^2+8^2)=√2/2cosγ=-8/√(6^2+10^2+8^2)=-2√2/5
求:直线的方向数、方向余弦、方向角问题? [(x-1)/1]=[(y-2)/-1]=[(z-3)/sqrt(2)]方向数:x=1,y=-1,z=√2