ZKX's LAB

我国大科学工程数量最多的是哪座城市? 全超导托卡马克数据

2020-10-11知识9

EAST超导托卡马克核聚变实验装置如何制造的?有哪些用途?核聚变能以氘氚为燃料,具有安全、洁净、资源无限3大优点,是最终解决我国乃至全人类能源问题的战略新能源。。

我国大科学工程数量最多的是哪座城市? 全超导托卡马克数据

科学岛的科研成果 合肥科学岛等离子体物理研究所是于1978年9月20日成立的大科学工程性基础研究所,经过多年努力,形成了以等离子体物理和核聚变工程技术研究为主攻方向,离子束生物工程、强磁场科学和技术、应用等离子体研究等多学科共同发展的格局。承担着国家大科学工程建设、国家“八六三”计划、“九七三”计划、国家计委、国家基金委的多项重大科研项目,是中国主要的核聚变研究基地。依靠科学岛自己的力量建设了HT-6B、HT-6M托卡马克装置和中国第一个超导托卡马克HT-7装置,建成了总功率达20万千瓦交直流脉冲电源系统,建成了兆瓦级的波加热系统和兆瓦级的低杂波驱动电流系统,建成了中国场强最高的20万高斯混合磁体和中国最大规模的低温液氮液氦系统,建成了先进的计算机控制和数据采集及处理系统。科学岛多年来获得科研成果200多项,其中国家及院部级重要科研成果奖50多项。1994年建成的HT-7装置是中国 第一个超导托卡马克,它的建设使中国成为继俄国、法国、日本之后第四个拥有超导托卡马克装置的国家。突出的运行和实验成果,标志着中国磁约束核聚变研究的综合实力和科学技术已达到国际水平,表明科学岛已具备设计、研制和运行超导托卡马克装置的能力。科学岛承担建设的国家。

我国大科学工程数量最多的是哪座城市? 全超导托卡马克数据

托卡马克核聚变,也称超导托卡马克可控热核聚变(EAST)、超导非圆截面核聚变实验,核物理学重要理论之 一,也是核聚变实现的重要途径之一.托卡马克核聚变是海水中富含的氘、氚。

我国大科学工程数量最多的是哪座城市? 全超导托卡马克数据

托卡马克核聚变的实验装置 “超导托卡马克核聚变2113”实验包括一个具有非圆小5261截面的大型4102超导托卡马克实验1653装置和低温、真空、水冷、电源及控制、数据采集和处理、波加热、波驱动电流、诊断等子系统。其中超 导托卡马克装置是本项目的核心。而超导托卡马克装置又包括超导纵场与极向场磁体系统、真空室、冷屏、外真空杜瓦及面对等离子体部件等部件。承担各部件设计的工程技术人员,在充分集思广益、充分发挥创新能力的基础上,借鉴国际上同类装置的经验,通过一丝不苟的努力工作,目前各项工作的进展呈良性循环-设计推动了预研工作的进行,预研工作的结果又使设计得到进一步优化。为世界近堆芯聚变物理和工程研究搭建起了一个重要的实验平台,为我国磁约束核聚变研究的进一步发展,提升中国磁约束聚变物理、工程、技术水平和培养高水平人才奠定了坚实基础。EAST是世界上唯一投入运行的全超导磁体的托卡马克装置,将为国际热核聚变实验堆(ITER)的建设及聚变能的发展做出了重要贡献。

中国研究可控热核反应(核聚变)应用了吗?

可控核聚变的实现难点是什么? 翻了一圈,讲等离子体物理的比较多,但对核材料的重视程度普遍较低,我觉得有必要补chui充ge几bi点。费米…

为什么托卡马克装置越建越大? 近几十年来,托卡马克装置的尺寸越来越大,比如ITER。尺寸大的好处是什么?是为了提高磁场强度,从而加强…

合肥科学岛 中国2113科学院等离子体物理5261研究所既科学岛是于1978年9月410220日成立的大科学工程性基础研究所,经过多年努1653力,形成了以等离子体物理和核聚变工程技术研究为主攻方向,离子束生物工程、强磁场科学和技术、应用等离子体研究等多学科共同发展的格局。承担着国家大科学工程建设、国家“八六三”计划、“九七三”计划、国家计委、国家基金委的多项重大科研项目,是我国主要的核聚变研究基地。依靠科学岛自己的力量建设了 HT-6B、HT-6M托卡马克装置和我国第一个超导托卡马克HT-7装置,建成了总功率达20万千瓦交直流脉冲电源系统,建成了兆瓦级的波加热系统和兆瓦级的低杂波驱动电流系统,建成了我国场强最高的20万高斯混合磁体和我国最大规模的低温液氮液氦系统,建成了先进的计算机控制和数据采集及处理系统。科学岛多年来获得科研成果200多项,其中国家及院部级重要科研成果奖50多项。1994年建成的HT-7装置是我国第一个超导托卡马克,它的建设使我国成为继俄、法、日之后第四个拥有超导托卡马克装置的国家。近几年突出的运行和实验成果,标志着我国磁约束核聚变研究的综合实力和科学技术已达到国际水平,表明科学岛已具备设计、研制和运行超导托卡马克装置的。

什么是核聚变实验堆 基本原理核能是能源家族的新成员,包括裂变能和聚变能两种主要形式。裂变能是重金属元素的核子通过裂变而释放的巨大能量。受控核裂变技术的发展已使裂变能的应用实现了商用化,如核(裂变)电站。裂变需要的铀等重金属元素在地球上含量稀少,而且常规裂变反应堆会产生放射性较强的核废料,这些因素限制了裂变能的发展。聚变能是两个较轻的原子核聚合为一个较重的原子核并释放出的能量。目前开展的受控核聚变研究正是致力于实现聚变能的和平利用。其实,人类已经实现了氘氚核聚变-氢弹爆炸,但那是不可控制的瞬间能量释放,人类更需要受控核聚变。维系聚变的燃料是氢的同位素氘和氚,氘在地球的海水中有极其丰富的蕴藏量。经测算,l升海水所含氘产生的聚变能等同于300升汽油所释放的能量。海水中氘的储量可使人类使用几十亿年。特别的,聚变产生的废料为氦气,是清洁和安全的。因此,聚变能是一种无限的、清洁的、安全的新能源。这就是世界各国尤其是发达国家不遗余力竞相研究、开发聚变能的根本原因。受控热核聚变能的研究主要有两种-惯性约束核聚变和磁约束核聚变。前者利用超高强度的激光在极短的时间内辐照氘氚靶来实现聚变,后者则利用强磁场可很好地约束带电粒子。

#原子能#科学#中国军情#核聚变

随机阅读

qrcode
访问手机版