抛物型偏微分方程的拟线性蜕化 考虑在绝热过程中气体通抄过多孔介质的流动,这个过程可由下述方程来刻画:,式中m>;1,u是气体密度,通常研究它的非负解。由于当u=0时方程蜕化,因此它是一个拟线性蜕化抛物型方程。对于袭这个问题的系统理论研究是从 1957年开始的。解u的支集的边界是一条自由边界,通过自由边u一般不连续,因此这个方程知一般只存在在索伯列夫意义下的广义解,而且由于当u=0时方程蜕化为一阶方程,因此与热传导方程不同,扰动的传播速道度是有限的。椭圆型偏微分方程、抛物型偏微分方程、双曲型偏微分方程的分类依据是什么? 不,你这分类只是linear equations的分类。下午提的问题,既然没人回答,只好自己再查一下。分类依据我做了个图,如下: (经 Siran Li 和 pyxv 提醒,该分类确实只针对两。椭圆型偏微分方程、抛物型偏微分方程、双曲型偏微分方程分别对应什么物理意义? 椭圆型偏微分方程:二维平面稳定场方程,如稳定浓度分布,稳定温度分布,静电场方程,无旋稳恒电流场方程,无旋稳恒流动方程等抛物型偏微分方程:一维输运方程,如扩散方程,热传导方程等双曲型偏微分方程:一维波动方程,如弦振动方程,杆振动方程,电报方程等它们是分别描述二维平面稳定场,一维输运,一维波动问题的方程偏微分方程的分类 二阶偏微分方程的一般形式为A*Uxx+2*B*Uxy+C*Uyy+D*Ux+E*Uy+F*U=0其特征方程为A*(dy)^2-2*B*dx*dy+C*(dx)^2=0若在某域内B^2-A*C0则在此域内称为双曲形方程其实主要是按特征方程的曲线类型分的注:Uxx表示U对x求二阶.抛物型偏微分方程的抛物方程 。二阶线性偏微分方程(6)在区域Q内称为是抛物型的,如果存在常数α>;0,使得对于任意ξ∈Rn,(x1,x2,…,xn,t)∈Q 有。的形式。(7)称为具有散度形式的抛物型方程,(6)称为非散度形式的抛物型方程。时,(6)与(7)是有区别的,不能互推。如果方程(6)、(7)中的系数和右端还依赖于u,墷u,则(6)和(7)称为拟线性抛物型方程。抛物型方程和椭圆型方程的研究有相似的地方,它们互相影响、互为借鉴。椭圆型方程理论很多结果在抛物型方程中都有相应的定理,例如先验估计、极值原理等。抛物型偏微分方程的极值原理 一个内部有热源的热传导过程(即在方程(1)中?≥0),它的最低温度一定在边界上或初始时刻达到,这就是所谓的极值原理。事实上,还可以有更强的结论:①如果在t=T时在Ω内部某一点达到了最低温度,那么在这个时刻T以前(即t时)整个物体的温度等于常数,这就是所谓的强极值原理;②如果这个最低温度只在t=T时刻的某一边界点P达到,那么在这一点(n是嬠Ω的外法向),此即所谓的边界点引理。极值原理与边界点引理在热传导方程的研究中有很多应用,它的一个最直接的推论就是导出了热传导方程初边值问题解的唯一性和稳定性。至于初值问题(1)、(2)的解的唯一性,它与解在无穷远点的性态有关。如果对于初值问题(1)、(2),附加上无穷远点增长阶的限,这里A,M是任意给定正常数,那么由极值原理可以证明初值问题(1)、(2)的解必唯一。抛物型偏微分方程的解的正则 (光滑性)若?呏0,则由初值问题解的表达式可看出,若u0(x,y,z)有界连续,则初值问题(1)、(2)的解u(x,y,z,t)当t>;0时都是无穷次连续可微的,而且关于空间变量x,y,z是解析的,关于时间变量t属于谢弗莱二类函数,即在|x|<;ρ内满足 当?扝0时,热传导方程解的可微性质与?的性质有关,例如为了得到热传导方程的古典解,除了需要假定?(x,y,z,t)连续以外,还要求对x,y,z或对t是赫尔德连续的。解的渐近性 如果边界上的温度以及热源密度与时间无关(),则热传导过程将趋于稳定状态,也就是当t→时,不管什么初始条件,物体内部温度总趋于同一个极限(稳定态的温度分布u(x,y,z)),它是椭圆边值问的解。解的半群性质 热传导是一个单向的不可逆过程,热总是由高温流向低温。如果边界温度为零,S(t)表示由初始时刻的温度场映到t时刻的温度场的线性解算子,由于热传导的不可逆性质,因此算子具有半群性质:①S(0)=I(I为恒同算子);②S(t+τ)=S(t)S(τ)t,τ≥0;由泛函分析中的希尔-吉田定理,存在一个相应的无穷小生成子A,S(t)=e-tA,使得具有齐次边条件的第一边值问题(1)、(2)、(3)的解具有明显的表达式,式中。抛物型偏微分方程的定解问题 为了确定一个具体的热传导过程,除了列出方程(1)以外,还必须知道物体Ω的初始温度(初始条件)和在它的边界嬠Ω上所受到的外界的影响(边界条件)。初始条件:边界条件,最通常的形式有三类。第一边界条件(或称狄利克雷条件):即表面温度为已知函数。第二边界条件(或称诺伊曼条件):式中n是Ω的外法向,即通过表面的热量已知。第三边界条件(或称罗宾条件):式中α≥0;即物体表面给定热交换条件。除了以上三类边界条件外还可以在边界嬠Ω上给定其他形式的边界条件,如斜微商条件、混合边界条件等。方程(1)连同初始条件(2)以及边界条件(3)、(4)、(5)中的任意一个一起构成了一个定解问题,根据边界条件的不同形式,分别称为第一、二、三边值问题,统称为热传导方程的初边值问题或混合问题。若Ω呏R3,则由方程(1)和初始条件(2)构成的定解问题称为热传导方程的初值问题或柯西问题。
随机阅读
- 民和园最 徐州小学入学所属辖区
- 好撒玛利亚人 秋雨之福 《疑犯追踪》里的“北极光”和“撒玛利亚人”这两个超级系统为什么还需要政府权限,不能直接接入互联网吗?
- 银川大兴镇卫生院地址 被狗咬了,在哪里可以打疫苗
- 南充站离机场 南充高坪机场离南充火车站有多远?有直到的公交车吗?打车要多少钱?
- 与幸福相关的一段话 用幸福写一段话
- 白石湖水幕电影 中国有什么 ACG 爱好者圣地巡礼的地方?
- 永丰余分公司 世界上最大的造纸厂在哪啊?
- 晚上中央电视台一套节目《新闻联播》开播的时刻用24时计时法记作______. 他24号的中央新闻联播
- 豌豆有什么功效? 嫩绿豌豆芽
- 基金从业资格证题 考证券从业资格证有用吗?
- 西飞阎良试飞院集团面积多大 成飞、西飞和沈飞,哪个实力更强?
- 大模大样是四字成语吗 一、根据意思写成语(四年级的)
- 牛肉馅汆丸子怎么调馅 牛肉馅汆丸子剩下的馅冻一个月变深色还能吃吗?
- 综合管网图 补报燃气管 燃气安装流程
- 武昌火车站附近有那些公交车,都是早上几点才开啊?都是去哪里的? 武昌站车次
- 赤水竹海国家森林公园 酒店 从遵义到赤水十丈洞瀑布,竹海国家森林公园,四洞沟景区怎么走?怎么走比较合理,谢谢!!! ?
- 人有多大胆的哲学问题
- 赛洛城306电话 鼻窦炎病友们,患病十来年的老鼻窦炎患者请问,你们是怎么与病魔抗争的?你们是什么症状?
- 如何教小学生变换句式?如反问句,否定句,把字句等 比字句否定形式
- 没有共赢的例子 互助共赢古人的例子