自协方差函数和自相关系数有什么联系 自相关函数除以方差就是自协方差函数!Φxx(τ)=γxx(τ)/σ 2.(1)式中:Φxx(τ)-自协方差函数γxx(τ)-自相关函数x-随机过程τ-时间延迟σ 2-x 的方差自协方差函数是归一化了的相关函数:Φxx(0)=γxx(0)/σ 2=1.(2)因为自相关函数在零点的值等于方差。
随机过程的基本概念 在客观世界中有些随机现象表示的是事物随机变化的过程,不能用随机变量或随机矢量来描述,而需要用一族无限多个随机变量来描绘,这就是随机过程。图1.14随机变量是指在同一条件下,事件每次发生的结果是随机的、不确定的,而随机过程是指在同样条件下,事物发生的某一过程是随机的、不可准确预知的。一个过程可能是由无限多个随机变量构成,而随机过程是由一族过程(随机出现的)构成的。如对某一个钻孔的水位进行连续观测,以 H0(t)来表示水位,在第一个水文年观测到的水位曲线为 H1(t),…,在第 n 个水文年里观测到的水位为Hn(t),每个水文年里所得到的样本曲线都是随机的(图 1.14)。{H(t),t∈(0,∞)},怎样理解为由一族随机变量构成的呢?我们固定某一观测时间 t0,考察 H(t)在每年 t0时刻的水位值 H1(t0),H2(t0),…,Hn(t0),显然H(t0)是一个随机变量,而当 t 变化时,H(t)是一族随机变量。因此,H(t)是一个随机过程。同样的道理,一个地区大气降水的过程,某条河流的流量或河水位变化过程都可看成是一个随机过程。由此可见,设{X(t),t∈T}为一随机过程,一次过程的观测可以视为随机过程的一个样本函数 X1(t),第 i 次过程。
自相关与偏自相关的概念?
在信息处理与2113传输中,经常遇到一类称为平稳随机序列5261的重要信号。所谓平4102稳随机序列,是指它的N维概率分1653布函数或N维概率密度函数与时间n的起始位置无关。换句话说,平稳随机序列的统计特性不随时间的平移而发生变化。如果将随机序列在时间上平移k,其统计特性满足等式:地球物理信息处理基础这类随机序列就称为平稳随机序列。然而,在实际情况中,这一平稳条件很难得到满足,因此常将这类随机序列称为狭义(严)平稳随机序列。大多数情况下,虽然随机序列并不是平稳随机序列,但是它们的均值和均方值却不随时间而改变,其相关函数仅是时间差的函数,一般将这一类随机序列称为广义(宽)平稳随机序列。下面我们重点分析研究这类平稳随机序列。为简单起见,将广义平稳随机序列简称为平稳随机序列。平稳随机序列的一维概率密度函数与时间无关,因此均值、方差和均方值均与时间无关,它们可分别表示为μx=E[X(n)]=E[X(n+m)](1-17)地球物理信息处理基础二维概率密度函数仅仅取决于时间差,与起始时间无关;自相关函数与自协方差函数是时间差的函数。自相关函数rxx(m)与自协方差函数cxx(m)(用cxx(m)表示covxx(m))分别为rxx(m)=E。
高斯、非高斯、平稳、非平稳各自的区别 高斯分布即正态分布一、平稳随机过程的定义:如果对于任意和以及有:则称为严平稳随机过程,或称狭义平稳随机过程。二.平稳随机过程的数字特征:1),平稳随机过程的数学期望与时间无关2),平稳随机过程的方差与时间无关3)其中:4)平稳随机过程的数学期望及方差与无关,它的自相关函数和协方差函数只与时间间隔有关;随机过程的这种“平稳”数字特征,有时就直接用来判断随机过程是否平稳。即若一个随机过程的数学期望及方差与时间无关,而其相关函数仅与有关,即我们就称这个随机过程是广义平稳的。三.宽平稳随机过程(广义平稳):若的数学期望为常数,且自相关函数只与有关,则称为宽平稳随机过程,或称广义平稳随机过程。不难看出,严平稳过程一定是宽平稳过程,反之,不一定。但对于正态随机过程两者是等价的。后面,若不加特别说明,平稳过程均指宽平稳过程。四.联合宽平稳随机过程:若,是宽平稳过程,且其中:。则称和为联合宽平稳随机过程。
相关函数的协方差的性质 协方差的5261性质:1、Cov(X,4102Y)=Cov(Y,X);2、Cov(aX,bY)=abCov(X,Y),(a,b是常数);3、Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)。由协方1653差定义,可以看出Cov(X,X)=D(X),Cov(Y,Y)=D(Y)。协方差函数定义为:若X(t)=Y(t)+i*Z(t),Y,Z为实过程,则称X(t)为复随机过程,相关函数定义为:扩展资料协方差反映了两个变量之间的相关程度:协方差是两个变量与自身期望做差再相乘,然后对乘积取期望。也就是说,当其中一个变量的取值大于自身期望,另一个变量的取值也大于自身期望时,即两个变量的变化趋势相同,此时,两个变量之间的协方差取正值。反之,即其中一个变量大于自身期望时,另外一个变量小于自身期望,那么这两个变量之间的协方差取负值。当x与y变化趋势一致时,两个变量与自身期望之差同为正或同为负,其乘积必然为正,所以其协方差为正;反之,其协方差为负。所以协方差的正负性反映了两个变量的变化趋势是否一致。再者,当x和y在某些时刻变化一致,某些时刻变化不一致时,在第一个点,x与y虽然变化,但是y的变化幅度远不及x变化幅度大,所以其乘积必然较小。在第二个点,x与y变化一致且变化幅度都很大,因此其乘积必然较大,在第三个点,x。
314数学农考试指什么,都是哪几本书呀 楼上这位同学说错了,数农属于农学门类联考,主要针对农学类考生,现在还是有的,他比其它数学要简单的多,主要考高数 线代 概率,高数基本上用同济上册就够了,不用看下册。
相关函数和协方差函数为什么相差aa
如何用直观的例子理解随机过程理论中随机过程的自相关函数和协方差函数的概念含义,它们在信号领域有何应用? 在学概率统计之前,我们学习的都是确定的函数。概率统计讨论了一次取值时获得的值是不确定的,而随机过程…
如何计算正态随机过程平方的协方差函数 机过程的定义:如果对于任意和以及有:则称为严平稳随机过程,或称狭义平稳随机过程。二。平稳随机过程的数字特征:1),平稳随机过程的数学期望与时间无关2),平稳随机过程的方差与时间无关3)其中:4)平稳随机过程的数学期望及方差与无关,它的自相关函数和协方差函数只与时间间隔有关;随机过程的这种“平稳”数字特征,有时就直接用来判断随机过程是否平稳。即若一个随机过程的数学期望及方差与时间无关,而其相关函数仅与有关,即我们就称这个随机过程是广义平稳的。三。宽平稳随机过程(广义平稳):若的数学期望为常数,且自相关函数只与有关,则称为宽平稳随机过程,或称广义平稳随机过程。不难看出,严平稳过程一定是宽平稳过程,反之,不一定。但对于正态随机过程两者是等价的。后面,若不加特别说明,平稳过程均指宽平稳过程。四。联合宽平稳随机过程:若,是宽平稳过程,且其中:。则称和为联合宽平稳随机过程。