数据挖掘方向前途怎么样 数据挖掘就业的途径从2113我看来有以下5261几种,(注意:本文所4102说的数据挖掘不包括数据仓库或1653数据库管理员的角色)。A:做科研(在高校、科研单位以及大型企业,主要研究算法、应用等)B:做程序开发设计(在企业做数据挖掘及其相关程序算法的实现等)C:数据分析师(在存在海量数据的企事业单位做咨询、分析等)现在各个公司对于数据挖掘岗位的技能要求偏应用多一些。目前市面上的岗位一般分为算法模型、数据挖掘、数据分析三种。应用及就业领域当前数据挖掘应用主要集中在电信(客户分析),零售(销售预测),农业(行业数据预测),网络日志(网页定制),银行(客户欺诈),电力(客户呼叫),生物(基因),天体(星体分类),化工,医药等方面。当前它能解决的问题典型在于:数据库营销(Database Marketing)、客户群体划分(Customer Segmentation&Classification)、背景分析(Profile Analysis)、交叉销售(Cross-selling)等市场分析行为,以及客户流失性分析(Churn Analysis)、客户信用记分(Credit Scoring)、欺诈发现(Fraud Detection)等等,在许多领域得到了成功的应用。职业薪酬就目前来看,和大多IT业的职位一样,数据挖掘方面的人才在国内的需求工作也是低端。
数据分析师和数据挖掘师哪个前景好?工资高?是否挖掘师能代替分析师? 不同职位在不同行业、不同公司、不同阶段的贡献是不一样的。企业需要的是团队配合,每个职位都有其意义和价值,没有可比性,关键时刻,前台小妹得体的举止也可以在客户那里加分不少,贡献可能超越工程师。大多数情况下,薪酬只代表一个人在职场的价格,不代表他在公司的价值。找工作也要看是否合适自己,职场中拼的都是相对优势,你要想获取高收入,应该扬长避短,寻找可以发挥自己优点的行业和职位,而不是寻找薪酬最高的工作。最后回答一下你的问题,这两个职位在不同企业定位和分工各有不同,一般情况下,数据挖掘工程师的工资高于数据分析师,原因是数据挖掘工程师写代码比较多,写代码越多,工资越高,这在任何一个行当都是如此。这两个职位前景都不错,如果选择的话编程底子不错的,去做“数据挖掘工程师”;数学不错有商业sense的,去做“数据分析师”。这两个职位有一定交集,如果你具有对方领域的能力,当然是有可能KO掉对方的,而且这种替代是相互的,谁替代谁都有可能。数据分析和数据挖掘的边界本身就比较模糊,所以不用太纠结选择哪个方向。可通过PPV课官网或者搜索“AI时代就业指南”了解更多大数据职位
数据分析师和数据挖掘工程师的区别是什么? 数据分析师岗位重2113在“分析”,数据挖掘工程5261师岗位重点是要“挖掘”。1、【数4102据1653分析师】:基于业务,通过数据分析手段发现和分析业务问题,为决策作支持。一般招聘这类岗位的公司规模都不会太小,人数可能不是一个唯一的衡量指标,但是业务规模肯定比较大,反而言之,业务规模太小的公司就没什么可分析的了。2、此岗位重在“分析”,首先要有一定的数据灵敏度和数学底子,知道在什么样的数据规模下,需要看什么样的数据指标。了解常规的数据挖掘算法,可以使用一些工具得到预期的结果。当然用工具的话是需要公司系统支持一些数据分析软件的,SPSS啊,Clementine什么的,如果没有,说句难听的,弄个Excel表格在有些公司也叫数据分析师。当然有些数据分析师Excel玩儿的可以很溜,可以用Excel模拟一个CTR预估算法的迭代过程。3、【数据挖掘工程师】:偏技术,通过建立模型、算法、预测等提供一些通用的解决方案,当然也有针对某业务的。岗位重点是要“挖掘”,所以对于人的要求就是要熟悉挖掘的方法,挖掘的工具,或者至少知道在什么平台应该用什么工具,面对什么样的需求应该怎么解。4、简单来说就是负责接收需求然后产出结果,大部分公司的数据挖掘。
大数据挖掘的前景如何? 大数据挖掘?大数据根本是应用,能计算应用的数据才有价值,所以,纯互联网公司也会跟实体传统结合,去传统,也要有数据思维,所以去哪好?工作为了梦想还是为了赚钱,你自己做决定
数据分析师的前景怎么样? 各位,你们觉得数据分析师可以长期发展下去吗?MS of Business Analytics毕业,Data Science方向,专业翻译成中文,大概是商业智能与大数据分析。现接了国内大厂offer,。