ZKX's LAB

比较低碳钢拉伸,铸铁拉伸的断口形状,简单分析其破坏的力学原因 分析铸铁拉伸和压缩破坏的断口形状

2020-10-08知识9

试分别画出铸铁拉伸、压缩和扭转破坏的断口形状,分析其破坏原因! 这应该是实验课题吧,最起码你也应该上传上那些被摧残铁棒的图片吧

比较低碳钢拉伸,铸铁拉伸的断口形状,简单分析其破坏的力学原因 分析铸铁拉伸和压缩破坏的断口形状

比较低碳钢拉伸,铸铁拉伸的断口形状,简单分析其破坏的力学原因 低碳钢拉伸时发生颈缩,断口截面要小于实际截面,截面不平整,断口呈金属光泽.铸铁不会发生颈缩,断口截面比较平整,呈灰黑色.

比较低碳钢拉伸,铸铁拉伸的断口形状,简单分析其破坏的力学原因 分析铸铁拉伸和压缩破坏的断口形状

铸铁的压缩试验中铸铁断口形状 铸铁的压缩试验中2113铸铁断口形状:试样拉伸达到5261强度极限ζb之前,在标距4102范围内的变形是均1653匀的。当应力增大至强度极限ζb之后,试样出现局部显著收缩,这一现象称为颈缩。颈缩出现后,使试件继续变形所需载荷减小,故应力应变曲线呈现下降趋势,直至最后在f点断裂。试样的断裂位置处于颈缩处,断口形状呈杯状,这说明引起试样破坏的原因不仅有拉应力还有切应力。

比较低碳钢拉伸,铸铁拉伸的断口形状,简单分析其破坏的力学原因 分析铸铁拉伸和压缩破坏的断口形状

急求铸铁拉伸试验断裂时的断口形状图,谢谢,必采纳 “1.低碳钢常温拉伸断口2113一般呈典型的杯椎状断口。2.铸铁5261试样常温拉伸断口4102基本没有变化(或者1653说稍微缩小的圆截面),破坏断口与横截面重合,断口粗糙,呈凹凸颗粒状。原因当然是因为前者是塑性材料后者是脆性材料咯,塑性材料受拉要经过弹性阶段,屈服阶段,以及强化和颈缩阶段(简单的说就是破坏前形状变化比较明显);而脆性材料受拉时则没有上述过程,破坏前没有明显的塑性变形,突然断裂。

铸铁式样在拉伸与压缩时破坏断面有何特征 是由什么引起的 铸铁在拉伸时断口平齐,断口处横截面积几乎没有变化,正应力引起变化;铸铁在被压缩时试件在较小的变形下突然破坏,破坏断面与轴线大致成45°~55°倾角,这表明试件沿斜。

在拉伸与压缩实验中,低碳刚及铸铁的断口特征? 拉伸:低碳刚断2113口呈杯状,平面断口5261;灰铸铁断口垂直与4102式样轴线,呈平口状。压缩:低碳刚压成鼓形1653,灰铸铁沿45度方向断裂。低碳钢退火组织为铁素体和少量珠光体,其强度和硬度较低,塑性和韧性较好。因此,其冷成形性良好,可采用卷边、折弯、冲压等方法进行冷成形。这种钢还具有良好的焊接性。含碳量从0.10%至0.30%低碳钢易于接受各种加工如锻造,焊接和切削,常用于制造链条,铆钉,螺栓,轴等。扩展资料:将灰口铸铁铁水经球化处理后获得,析出的石墨呈球状,简称球铁。碳全部或大部分以自由状态的球状石墨存在,断口成银灰色。比普通灰口铸铁有较高强度、较好韧性和塑性。其牌号以“QT”后面附两组数字表示,例如:QT45-5(第一组数字表示最低抗拉强度,第二组数字表示最低延伸率)。用于制造内燃机、汽车零部件及农机具等。低碳钢有较大的时效倾向,既有淬火时效倾向,还有形变时效倾向。当钢从高温较快冷却时,铁素体中碳、氮处于过饱和状态,它在常温也能缓慢地形成铁的碳氮物,因而钢的强度和硬度提高,而塑性和韧性降低。低碳钢即使不淬火而空冷也会产生时效。低碳钢经形变产生大量位错,铁素体中的碳、氮原子与位错发生弹性交互作用,碳、。

铸铁的拉伸和压缩破坏断口为什么不同 铸铁的拉伸和2113压缩破坏断口5261不同,原因是:铸4102铁是脆性材料,其抗压性能远大于其抗1653拉性能和抗剪性能。铸铁常温拉伸时断口基本没有变化(或者说稍微缩小的圆截面),无屈服、颈缩现象,可近似认为在弹性阶段直接断裂,其断口与横截面重合,断口粗糙,呈凹凸颗粒状。铸铁受压时沿45°~55°截面被剪断,断口平滑呈韧性,因为其抗压性能远大于其抗剪性能,铸铁实际上是被“剪”断的。

比较低碳钢拉伸,铸铁拉伸的断口形状,简单分析其破坏的力学原因 低碳钢试件受扭转时沿横截面破坏,此破坏是由横截面上的切应力造成的,说明低碳钢的抗剪强度较差,断口宏观。

低炭钢和铸铁拉伸断口形状怎么描述? 低碳钢断裂时有很大的2113塑 性变形,断5261口为杯状周边为 45°的剪切唇,断口组织为4102暗灰色纤维状1653,因此是一种典型的韧 状断口。铸铁近似认为是经弹性阶段直接过渡到断裂。其破坏断口沿横截面方向,说明铸铁的断裂是由拉 应力引起,铸铁断后伸长率甚小,所以铸铁常在没 有任何预兆的情况下突然发生脆断。铸铁断口与 正应力方向垂直,断面平齐为闪光的结晶状组织,是典型的脆状断口。

#抗拉强度#断裂韧性#拉伸#断口分析

随机阅读

qrcode
访问手机版