高斯随机过程的自相关函数 机过程的定义:如果对于任意和以及有:则称为严平稳随机过程,或称狭义平稳随机过程。二.平稳随机过程的数字特征:1),平稳随机过程的数学期望与时间无关 2),平稳随机过程。
高斯过程 均值函数 协方差矩阵 自相关函数 R和Q矩阵一般来说都是提前设定一个值,因为卡尔曼滤波是一种迭代优化滤波器,所以不必要使得初始化的值十分精确。当然,如果设定越接近真实值其结果越准确,算的速度也越快。大部分都是根据经验来设,还有就是与所选用的算法有关,如果预测值时利用一些比较好的算法,使得预测值接近真实值的话,我们就可以将R和Q选的小一点,否则要选的大一点。
高斯随机过程的自相关函数 机过程的定义:如果对于任意和以及有:则称为严平稳随机过程,或称狭义平稳随机过程.二.平稳随机过程的数字特征:1),平稳随机过程的数学期望与时间无关2),平稳随机过程的方差与时间无关3)其中:4)平稳随机过程的数学期望及方差与无关,它的自相关函数和协方差函数只与时间间隔有关;随机过程的这种“平稳”数字特征,有时就直接用来判断随机过程是否平稳.即若一个随机过程的数学期望及方差与时间无关,而其相关函数仅与有关,即我们就称这个随机过程是广义平稳的.三.宽平稳随机过程(广义平稳):若的数学期望为常数,且自相关函数只与有关,则称为宽平稳随机过程,或称广义平稳随机过程.不难看出,严平稳过程一定是宽平稳过程,反之,不一定.但对于正态随机过程两者是等价的.后面,若不加特别说明,平稳过程均指宽平稳过程.四.联合宽平稳随机过程:若,是宽平稳过程,且其中:.则称和为联合宽平稳随机过程.
高斯白噪声的概率密度函数和自相关函数是什么? 白噪声,就是说频谱为一常数;也就是说,其协方差函数在delay=0时不为0,在delay不等于0时值为零;换句话说,样本点互不相关。所以,“白”与“不白”是和分布没有关系的。当随机的从高斯分布中获取采样值时,采样点所组成的随机过程就是“高斯白噪声”;同理,当随机的从均匀分布中获取采样值时,采样点所组成的随机过程就是“均匀白噪声”。那么,是否有“非白的高斯”噪声呢?答案是肯定的,这就是”高斯色噪声。这种噪声其分布是高斯的,但是它的频谱不是一个常数,或者说,对高斯信号采样的时候不是随机采样的,而是按照某种规律来采样的。白噪声应该是自相关函数在delay=0时不为0,在delay不等于0时值为零。如果要说协方差函数,那么应该加个条件:零均值。
多元高斯密度函数完全看不懂怎么办? 全是矩阵啊。伤了 刚刚写了一波专栏 直观数学漫谈,今天来强答一发这个问题,前面的一元以及维度不相关的多维高斯分布熟悉的可以直接跳过 好,让我们来研究研究这个看起来。
高斯过程 均值函数 协方差矩阵 自相关函数 R和Q矩阵一般来说都是提前设定一个值,因为卡尔曼滤波是一种迭代优化滤波器,所以不必要使得初始化的值十分精确。当然,如果设定越接近真实值其结果越准确,算的速度也越快。