如何证明一个函数在其定义域是连续的
怎么证明分段函数在定义域内是连续的? 一般地,分段函数是由几个初等函数构成的,而初等函数在定义域的区间内是连续的。所以证明分段函数的连续性,先说明这几段函数各自在定义域的区间上连续,再证明在分段点的连续性。后者是重点,也难点,必须用单侧极限理论严格证明。亲,以简驭繁。举个简单的例子。证明:分段函数f(x)的连续性。f(x)={x,x≥0;x,x证明:显然y=x在(0,+∞)上是连续的,y=-x在(-∞,0)上是连续的.下面证明f(x)在x=0处连续。f(0+)=0,f(0-)=0,而f(0)=0,得f(0+)=f(0-)=f(0),所以f(x)在x=0处连续.于是f(x)在定义域R上连续。
我想问一下怎么证明函数在定义域内可导,最好有具体步骤,还有怎么证明函数在定义域内连续,一直困扰我。
如何证明一个函数在其定义域是连续的 理论2113上,证明在定义域的开5261区间任意一点x0有x→x0limf(x)=f(x0).闭区间4102还需要证明在端点处单侧连1653续。实际上,如果题目没有要求用连续的定义证明。那么,指出这个函数是初等函数,所以连续。因为“一切初等函数在其定义域上是连续的。如果是分段函数,还要单独考察在分段点处的连续性。
证明函数在定义域内连续 函数定义域为x≠0对任意x≠0,任意ε>;0,总存在d=min{|x|(ε*x^2)/(1+ε*|x|)},当|△x|,有sin[1/(x+△x)]-sin(1/x)|2|cos{[1/(x+△x)+1/x]/2}sin{[1/(x+△x)-1/x]/2}|sin{[1/(x+△x)-1/x]/2}|[1/(x+△x)-1/x]/2|1/(x+△x)-1/x|x|/|x|x+△x|1/|x|x/△x+1|[|x|*(|x|/|△x|-1)][|x|*(|x|/d-1)]ε所以y=sin(1/x)在x≠0上连续
怎样证明函数y=根号x在定义域内连续
证明函数在定义域内连续 定义域,x≠0,其余点1/x=u,sin(1/x)=sinu,连续。
如何证明函数在他的定义域内是连续函数 理论上,证明在定义域的开区间任意一点x0有x→x0limf(x)=f(x0).闭区间还需要证明在端点处单侧连续。实际上,如果题目没有要求用连续的定义证明。那么,指出这个函数是,所以连续。因为“一切在其定义域上是连续的。如果是,还要单独考察在分段点处的连续性。
如何证明初等函数在其定义域内处处连续 基本初等函数的连续性,看上去很明显,要证明的话,倒还真不知道,不过如果基于已经知道基本初等函数的连续性,要证明初等函数的连续性,证明就会简单点.由连续函数的四则运算和复合运算定理内容可以证明,初等函数是由基本初等函数经过有限次的四则运算和复合运算构成的,由上述定理就可以知道,初等函数在其定义域内处处连续.