平行四边形的性质 特殊四边形要点整理一、平行四边形定义:两组对边分别平行的四边形叫做平行四边形性质:平行四边形的对边相等平行四边形的对角相等平行四边形的对角线互相平分.判定:两组对边分别平行的四边形是平行四边形两组对边分别相等的四边形是平行四边形两组对角分别相等的四边形是平行四边形的一组对边平行且相等的四边形是平行四边形.对角线互相平分的四边形是平行四边形.二、矩形:定义:有一个角是直角的平行四边形叫做矩形.1.矩形的性质(1)具有平行四边形的所有性质.(2)特有性质:四个角都是直角,对角线相等.矩形是轴对称图形.2.矩形的判定(1)定义:有一个角是直角的平行四边形叫做矩形.(2)定理1:有三个角是直角的四边形是矩形.(3)定理2:对角线相等的平行四边形是矩形.三、菱形1.定义:有一组邻边相等的平行四边形叫做菱形.2.菱形的性质(1)具有平行四边形的一切性质.(2)菱形的四条边都相等.(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角.(4)菱形是轴对称图形.(5)菱形面积=底×高=对角线乘积的一半.3.菱形的判定(1)定义:有一组邻边相等的平行四边形叫做菱形.(2)定理1:四边都相等的四边形是菱形.(3)定理2。
平行四边形的定义和三个性质是什么 一、bai定义:两组对边分别平行的du四zhi边形叫做平行四dao边形。二、性质:内1、平行四边形属于平面图容形。2、平行四边形属于四边形。3、平行四边形属于中心对称图形。三、其他性质1、平行四边形的对边是平行的(根据定义),因此永远不会相交。2、平行四边形的面积是由其对角线之一创建的三角形的面积的两倍。3、平行四边形的面积也等于两个相邻边的矢量交叉乘积的大小。4、任何通过平行四边形中点的线将该区域平分。5、任何非简并仿射变换都采用平行四边形的平行四边形。扩展资料:平行四边形判定1、两组对边分别平行的四边形是平行四边形(定义判定法);2、一组对边平行且相等的四边形是平行四边形;3、两组对边分别相等的四边形是平行四边形;4、两组对角分别相等的四边形是平行四边形(两组对边平行判定);5、对角线互相平分的四边形是平行四边形。补充:条件3仅在平面四边形时成立,如果不是平面四边形,即使是两组对边分别相等的四边形,也不是平行四边形。参考资料:—平行四边形
平行四边形的定义、性质与判定 定义两组对边分别平行2113的5261四边4102形1653叫做平行四边形。1、平行四边形属于平面图形。2、平行四边形属于四边形。3、平行四边形属于中心对称图形。性质(矩形、菱形、正方形都是特殊的平行四边形。(1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。(简述为“平行四边形的两组对边分别相等”)(2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。(简述为“平行四边形的两组对角分别相等”)(3)如果一个四边形是平行四边形,那么这个四边形的邻角互补。(简述为“平行四边形的邻角互补”)(4)夹在两条平行线间的平行的高相等。(简述为“平行线间的高距离处处相等”)(5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。(简述为“平行四边形的对角线互相平分”)(6)连接任意四边形各边的中点所得图形是平行四边形。(推论)(7)平行四边形的面积等于底和高的积。(可视为矩形。(8)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。(9)平行四边形是中心对称图形,对称中心是两对角线的交点.(10)平行四边形不是轴对称图形,但平行四边形是中心对称图形。。
平行四边形的特性是什么具有什么性 平行四边形的特性是对边平行且相等,具有不稳定性。平行四边形,是在同一个二维平面内,由两组平行线段组成的闭合图形。平行四边形一般用图形名称加四个顶点依次命名。注:在用字母表示四边形时,一定要按顺时针或逆时针方向注明各顶点。在欧几里德几何中,平行四边形是具有两对平行边的简单(非自相交)四边形。平行四边形的相对或相对的侧面具有相同的长度,并且平行四边形的相反的角度是相等的。相比之下,只有一对平行边的四边形是梯形。平行四边形的三维对应是平行六面体。扩展资料:平行四边形的相关判定1、两组对边分别平行的四边形是平行四边形(定义判定法)。2、一组对边平行且相等的四边形是平行四边形。3、两组对边分别相等的四边形是平行四边形。4、两组对角分别相等的四边形是平行四边形(两组对边平行判定)。5、对角线互相平分的四边形是平行四边形。
平行四边形的定义、性质与判定要全的具体罗列出来 平行四边形的定义:在同一平面内有两组对边分别平行的四边形叫做平行四边形.平行四边形的定义、性质:(1)平行四边形对边平行且相等.(2)平行四边形两条对角线互相平分.(菱形和正方形)(3)平行四边形的对角相.
平行四边形的特性是什么 平行四边形有哪些特征呢
平行四边形的性质是什么 (1)平行四边形对边平行且相等.(2)平行四边形两条对角线互相平分.(菱形和正方形)(3)平行四边形的对角相等,两邻角互补(4)连接任意四边形各边的中点所得图形是平行四边形.(推论)(5)平行四边形的面积.