《群论》,在物理、化学上,有哪些具体用途? 物理上一般用群论描述对称性。保有系统对称性的操作的集合构成群。由群的性质能衍生出部分系统的性质。最简单的,经典力学里就有的,系统的时间平移不变性带来能量守恒,空间平移不变性带来动量守恒等等。深入一点的话,在量子力学里,群即系统的对称性表示为在相似变换下保持哈密顿量不变的算符,由此可以给出系统能带的性质,包括简并性,由此可以简化计算;这方面最重要的应用就是分子能谱的计算,固体物理中的Bloch定理以及能带计算的简化,都是空间群的应用。我不懂化学,但我估计化学只是在上面说到的计算中应用群论。物理里群论还有更深入的应用。描述相对论粒子运动的Dirac方程几乎可以说是洛仑兹群的有限维群表示的结果。再深入到粒子物理的层面,标准模型的基础就是规范群(这个我不懂)。
群论是谁发明的?
群论有什么用啊? 群论,是数学概念。在数学和抽象代数中,群论研究名为群的代数结构。群在抽象代数中具有基本的重要地位:许多代数结构,包括环、域和模等可以看作是在群的基础上添加新的运算和公理而形成的。群的概念在数学的许多分支都有出现,而且群论的研究方法也对抽象代数的其它分支有重要影响。群论的重要性还体现在物理学和化学的研究中,因为许多不同的物理结构,如晶体结构和氢原子结构可以用群论方法来进行建模。于是群论和相关的群表示论在物理学和化学中有大量的应用。扩展资料:群的概念引发自多项式方程的研究,由埃瓦里斯特·伽罗瓦在18世纪30年代开创。在得到来自其他领域如数论和几何学的贡献之后,群概念在1870年左右形成并牢固建立。现代群论是非常活跃的数学学科,它以自己的方式研究群。为了探索群,数学家发明了各种概念来把群分解成更小的、更好理解的部分,比如置换群、子群、商群和单群等。参考资料来源:-抽象代数参考资料来源:-群论