ZKX's LAB

方差的数学期望是

2020-07-16知识17
数学期望和方差的关系? 方差=E(x2)-E(x)2,E(X)是数学期2113望5261。在概率论和统计学中4102,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘1653以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。方差在概率论和统计学中,一个随机变量的方差描述的是它的离散程度,也就是该变量离其期望值的距离。一个实随机变量的方差也称为它的二阶矩或二阶中心动差,恰巧也是它的二阶累积量。这就是将各个误差将之平方,相加之后再除以总数,透过这样的方式来算出各个数据分布、零散的程度。扩展资料:期望值像是随机试验在同样的机会下重复多次,所有那些可能状态平均的结果,便基本上等同“期望值”所期望的数。期望值可能与每一个结果都不相等。换句话说,期望值是该变量输出值的加权平均。期望值并不一定包含于其分布值域,也并不一定等于值域平均值。赌博是期望值的一种常见应用。例如,美国的轮盘中常用的轮盘上有38个数字,每一个数字被选中的概率都是相等的。赌注一般押在其中某一个数字上,如果轮盘的输出值和这个数字相等,那么下赌者可以获得相当于赌注35倍的奖金(原注不包含在内),若输出值和下压数字不同,则赌注就输掉了。考虑到38种... 根据数学期望方差的不同计算公式 将第一个公式中括号内的完全平方打开得到 DX=E(X^2-2XEX+(EX)^2) E(X^2)-E(2XEX)+(EX)^2 E(X^2)-2(EX)^2+(EX)^2 E(X^2)-(EX)^2 数学期望,方差的计算公式是? 原始数据:x1,x2,.,xn x 的数学期望:Ex=[∑(i=1->n)xi]/n(1) x 的方差:D(x)=[∑(i=1->n)(xi-Ex)2]/n(2) x 的方差:D(x)还等于:D(x)=x的均方值-x的均值Ex的平方(Ex)2, 即:D(x)=[∑(i=1->n)(xi)2]/n-(Ex)2(3) 概率题求出数学期望后怎么求方差? 方差有两种求法第一种:根据定义求设方差=Var(X) 则Var(X)=(2-37/10)^2×(3/5)+(3-37/10)^2×(3/10)+(4-37/10)^2×(1/10) 第二种:用公式求方差Var(X)=E(X^2)-[E(X)]^2=[(2^2×5/3)+(3^2×3/10)+(4^2×1/10)]-(37/10)^2 这两种算法的结果是一样的 急求!!方差等于一代表什么?数学期望等于零代表什么? 方差等于1,那么标准差也就是1,表示概率函数在对称轴左右偏差1的位置导数为零,即为拐点;期望为0,表示概率函数以Y轴为对称轴对称。 数学期望和方差的几个推广公式? 对于2项分布(例子:在n次试验中有K次成功,每次成功概率为P,他的分布列求数学期望和方差)有EX=np DX=np(1-p) n为试验次数 p为成功的概率对于几何分布(每次试验成功概率为P,一直试验到成功为止)有EX=1/P DX=p^2/q 还有任何分布列都通用的 DX=E(X)^2-(EX)^2 数学期望,方差的计算公式是?? 最低0.27元开通文库会员,查看完整内容>原发布者:流空lx 期望与方差的相关公式-、数学期望的来由早在17世纪,有一个赌徒向法国著名数学家帕斯卡挑战,给他出了一道题目,题目是这样的:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,赢家可以获得100法郎的奖励。当比赛进行到第三局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,那么如何分配这100法郎才比较公平?用概率论的知识,不难得知,甲获胜的概率为1/2+(1/2)*(1/2)=3/4,或者分析乙获胜的概率为(1/2)*(1/2)=1/4。因此由此引出了甲的期望所得值为100*3/4=75法郎,乙的期望所得值为25法郎。这个故事里出现了“期望”这个词,数学期望由此而来。定义1若离散型随机变量可能取值为(=1,2,3,…),其分布列为(=1,2,3,…),则当<时,则称存在数学期望,并且数学期望为E=,如果=,则数学期望不存在。定义2期望:若离散型随机变量ξ,当ξ=xi的概率为P(ξ=xi)=Pi(i=1,2,…,n,…),则称Eξ=∑xipi为ξ的数学期望,反映了ξ的平均值.期望是算术平均值概念的推广,是概率意义下的平均.Eξ由ξ的分布列唯一确定.二、数学期望的性质(1)设C是常数,则E(C)=C。(2)若k是... 方差与数学期望的关系公式DX=EX^2-(EX)^2 不太清楚是什么意思 举例说下。谢谢 ^将第一2113个公式中括号内的完全平方打开得到5261 DX=E(X^2-2XEX+(EX)^2) E(X^2)-E(2XEX)+(EX)^2 E(X^2)-2(EX)^2+(EX)^2 E(X^2)-(EX)^2 若随机4102变量X的分布函数1653F(x)可表示成一个非负可积函数f(x)的积分,则称X为连续性随机变量,f(x)称为X的概率密度函数(分布密度函数)。数学期望 完全由随机变量X的概率分布所确定。若X服从某一分布,也称 是这一分布的数学期望。若X的取值比较集中,则方差D(X)较小,若X的取值比较分散,则方差D(X)较大。因此,D(X)是刻画X取值分散程度的一个量,它是衡量取值分散程度的一个尺度。扩展资料:离散型随机变量与连续型随机变量都是由随机变量取值范围(取值)确定。变量取值只能取离散型的自然数,就是离散型随机变量。例如,一次掷20个硬币,k个硬币正面朝上,k是随机变量。k的取值只能是自然数0,1,2,…,20,而不能取小数3.5、无理数,因而k是离散型随机变量。如果变量可以在某个区间内取任一实数,即变量的取值可以是连续的,这随机变量就称为连续型随机变量。例如,公共汽车每15分钟一班,某人在站台等车时间x是个随机变量,x的取值范围是[0,15),它是一个区间,从理论上说在这个区间内可取任一实数3.5、无理数 ... 均匀分布U(a,b)的数学期望和方差分别是 数学期望:E(x)=(a+b)/2 方差:D(x)=(b-a)2/12 急求!!方差等于一代表什么?数学期望等于零代表什么? 方差代表与中心偏离的程度,一般为与平均数的偏离,方差与0的差距越大说明偏离程度越大,等于一并没有什么特殊的意义。比较有意义的是方差为0的情况:D(X)=0的充分必要条件...

#数学期望#方差计算公式#数学#随机变量#方差公式

随机阅读

qrcode
访问手机版