概率的公理化定义是什么? 概率的公理化包括两个方面:一是事件的公理化表示(利用集合论),二是概率的公理化表示(测度论).其次是建立在集合之上的可测函数的分析和研究,这就可以利用现代分析技术了.这些工作是由前苏联数学家科尔莫格洛夫在1933年完成的.这里关于西格玛域(代数)等这些就不定义了,直接给出三条公理.
概率论的公理化定义怎么理解? 1:因为概率是个测度,测度就是这么定义的。
概率的公理化定义如何理解?
概率的公理化定义是什么?
关于概率的公理化定义 奇怪,系统说我的回答已被使用.要我从新编辑.可数包含有限作为特例.你说得对,“可数个”是数量有无限多个,但可以一一列举的意思.例如所有的整数就是可数的.但所有的无理数不可数.可数又叫可列,即一一列举的意思.概率测度的有限可加性可作为可数可加性的特例.你所说的证明可能是从任两个的可加性去推有限可加性,而不会让你从可数可加性去推有限可加性.