ZKX's LAB

异面直线的距离怎么求 空间中,两条异面直线的距离怎样求

2020-07-20知识13

两异面直线之间的距离怎么求 最低0.27元/天开通文库会员,可在文库查看完整内容>;原发布者:暗夜伏特加如何求异面直线的距离 求异面直线距离方法:(1)(直接法)当公垂线段直接能作出时,直接求。此时,作出并证明异面直线的公垂线段,是求异面直线距离的关键。(2)(转化法)把线线距离转化为线面距离,如求异面直线a,b距离,先作出过a且平行于b的平面α,则b与α距离就是a,b距离。(线面转化法)也可以转化为过a平行b的平面和过b且平行于a的平面,两平行平面的距离就是两条异面直线距离。(3)(体积桥法)利用线面距再转化为锥体的高用体积公式来求。(4)(构造函数法)常常利用距离最短原理构造二次函数,利用求二次函数最值来解。两条异面直线间距离问题,教学大纲中要求不高(要求会计算已给出公垂线时的距离),这方面的问题的其它解法7a686964616fe4b893e5b19e31333433623764,要适度接触,以开阔思路。典型题目分析 正方体ABCD-A1B1C1D1棱长为a,求异面直线AC与BC1的距离。解法1:(直接法)取BC的中点P,连结PD,PB1分别交AC,BC1于M,N点,易证:DB1/MN,DB1⊥AC,DB1⊥BC1,∴MN为异面直线AC与BC1的公垂线段,易证:MN=B1D=a。(如图1所示)小结:此法也称定义法,这种解法是作出异面。异面直线的距离怎么求 做的那个面应该是另一条直线的垂面吧,那样就对了啊问你的老师不是更清楚吗可以平移其中一条直线,使它与另一条直线在同一平面,交于某点,这两条平行线的距离就是这两条异面直线的距离异面直线的距离怎么求? 假设两异面直线为ab做平行b的直线b'与a相交,a与b'确定一个平面A过a做一直线与平面A垂直,并与b相交,得一相交线就是异面直线的距离两异面直线的距离公式是什么 两异面直线的距离公式是d=【AB*n】/【n】(AB表示异面直线任意2点的连线,n表示法向量)。异面直线的距离,确定和计算两条异面直线间的距离,关键在于实现两个转化:一是转化为一条异面直线和另一条异面直线所在而与它平行的平面之间的距离。二是转化为两条异面直线分别所在的两个平行平面之间的距离。拓展资料和两条异面直线都垂直相交的直线叫做两条异面直线的公垂线,公垂线与两条直线相交的点所形成的线段,叫做这两条异面直线的公垂线段。两条异面直线的公垂线段的长度,叫做这两条异面直线的距离。定理一:任意两条异面直线有且只有一条公垂线。定理二:两条异面直线的公垂线段长(异面直线的距离)是分别连结两条异面直线上两点的线段中最短的一条。参考资料:-异面直线的距离异面直线的距离怎么求? 求异面直线距离方法(1)(直接法)当公垂线段直接能作出时,直接求。此时,作出并证明异面直线的公垂线段,是求异面直线距离的关键。(2)(转化法)把线线距离转化为线面距离,如求异面直线a,b距离,先作出过a且平行于b的平面α,则b与α距离就是a,b距离。(线面转化法)也可以转化为过a平行b的平面和过b且平行于a的平面,两平行平面的距离就是两条异面直线距离。(3)(体积桥法)利用线面距再转化为锥体的高用体积公式来求。(4)(构造函数法)常常利用距离最短原理构造二次函数,利用求二次函数最值来解如何求异面直线的距离 平面几何不能求,立体几何可以通过一条直线做一个平面平行于另一条直线,再过直线做平面的垂线,此时用上一些已知条件就好求了!过一条已知直线做另一条直线的平行线,这样两条相交直线就构成了一个平面你要是有例题可以贴出来空间中,两条异面直线的距离怎样求 ①作直线a、b的方向向量a、b,求a、b的法向量n,即此异面直线a、b的公垂线的方向向量;②在直线a、b上各取一点A、B,作向量AB;③求向量AB在向量n上的射影d,则异面直线a、b间的距离为请问异面直线的距离怎么求?谢谢。 求异面直线距离有以5261下四种方法:?(1)直接法:当公垂4102线段直接能作出1653时,直接求。此时,作出并证明异面直线的公垂线段,是求异面直线距离的关键。(2)转化法:把线线距离转化为线面距离,如求异面直线a,b距离,先作出过a且平行于b的平面α,?则b与α距离就是a,b距离。(3)线面转化法:也可以转化为过a平行b的平面和过b且平行于a的平面,两平行平面的距离就是两条异面直线距离。(4)体积桥法:利用线面距再转化为锥体的高用体积公式来求。(5)构造函数法:常常利用距离最短原理构造二次函数,利用求二次函数最值来解。扩展资料:异面直线的判定方法:(1)定义法:由定义判定两直线永远不可能在同一平面内,常用反证法。(2)判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线。例证:判定定理:平面的一条交线与平面内不经过交点的直线互为异面直线。已知:AB∩α=A,CD?α,A?CD。求证:AB和CD互为异面直线。证明:假设AB和CD在同一平面内,设这个平面是β。即A∈β,CD?β。A∈α,CD?α,A?CD由不在同一直线上的三个点确定一个平面可知,α和β重合。AB?βAB?α,这与已知条件AB∩α=A矛盾。AB和CD不在同一。异面直线间的距离怎么求? (1)找出(或作出)公垂线,计算公垂线段的长度.(2)转化为求线面间的距离.(3)转化为求平行平面间的距离.(4)向量方法:先求两异面直线的公共法向量,再求两异面直线上两点的连结线段在公共法向量上的射影长.两异面直线之间的距离怎么求 1、辅助平面法(1)线面垂直法用于两条异面直线互相垂直情况.若已知两条异面直线互相垂直,那么可以寻找一个辅助平面,使它过其中一条直线且垂直于另一条直线,在辅助平面上,过垂足引前一条直线的垂线,就得到这两条异面.

#法向量#线面平行#异面直线

随机阅读

qrcode
访问手机版