ZKX's LAB

聚类算法中的矩阵问题? 子空间聚类算法

2020-10-04知识14

用于数据挖掘的聚类算法有哪些,各有何优势

聚类算法中的矩阵问题? 子空间聚类算法

高维数据聚类方法,将物理或抽象对象的集合分组称为由类似的对象组成的多个类的过程被称为聚类。高维聚类分析与传统聚类分析的最主要差别就是高维度。高维数据聚类是聚类。

聚类算法中的矩阵问题? 子空间聚类算法

常用的聚类方法有哪几种?? 聚类分析的算法可以分为划分法、层次法、基于密度的方法、基于网格的方法、基于模型的方法。1、划分法,给定一个有N个元组或者纪录的数据集,分裂法将构造K个分组,每一个分组就代表一个聚7a686964616fe4b893e5b19e31333431343662类,K。2、层次法,这种方法对给定的数据集进行层次似的分解,直到某种条件满足为止。3、基于密度的方法,基于密度的方法与其它方法的一个根本区别是:它不是基于各种各样的距离的,而是基于密度的。这样就能克服基于距离的算法只能发现“类圆形”的聚类的缺点。4、图论聚类方法解决的第一步是建立与问题相适应的图,图的节点对应于被分析数据的最小单元,图的边(或弧)对应于最小处理单元数据之间的相似性度量。5、基于网格的方法,这种方法首先将数据空间划分成为有限个单元的网格结构,所有的处理都是以单个的单元为对象的。6、基于模型的方法,基于模型的方法给每一个聚类假定一个模型,然后去寻找能够很好的满足这个模型的数据集。扩展资料:在商业上,聚类可以帮助市场分析人员从消费者数据库中区分出不同的消费群体来,并且概括出每一类消费者的消费模式或者说习惯。它作为数据挖掘中的一个模块,可以作为一个单独的工具以发现。

聚类算法中的矩阵问题? 子空间聚类算法

谱聚类算法的算法步骤 谱聚类算法将数据集中的每个对象看作是图的顶点V,将顶点间的相似度量化作为相应顶点连接边E的权值,这样就得到一个基于相似度的无向加权图G(V,E),于是聚类问题就可以转化为图的划分问题。基于图论的最优划分准则就是使划分成的子图内部相似度最大,子图之间的相似度最小。虽然根据不同的准则函数及谱映射方法,谱聚类算法有着不同的具体实现方法,但是这些实现方法都可以归纳为下面三个主要步骤:1)构建表示对象集的相似度矩阵W;2)通过计算相似度矩阵或拉普拉斯矩阵的前k个特征值与特征向量,构建特征向量空间;3)利用K-means或其它经典聚类算法对特征向量空间中的特征向量进行聚类。上面的步骤只是谱聚类算法的一个总体框架,由于划分准则、相似度矩阵计算方法等因素的差别,具体的算法实现同样会有所差别,但其本质依然是图划分问题的连续放松形式。

聚类算法中的矩阵问题?

子空间聚类的特性

#特征向量#大数据#层次聚类方法#模糊聚类分析#矩阵

随机阅读

qrcode
访问手机版