ZKX's LAB

如何判断一个微分方程是线性,还是非线性微分方程?! 微分方程的线性代数解法

2020-10-04知识9

线性微分方程与非线性微分方程的区别是什么? 线性与非线性微分方程的区别,以及齐次与非齐次微分方程的区别是什么?

如何判断一个微分方程是线性,还是非线性微分方程?! 微分方程的线性代数解法

微分方程的特解怎么求 二次非齐次微分方程的一般解法一般式是这样的5261ay''+by'+cy=f(x)第一4102步:求特征根令ar2+br+c=0,解得1653r1和r2两个值,(这里可以是复数,例如(βi)2=-β2)第二步:通解1、若r1≠r2,则y=C1*e^(r1*x)+C2*e^(r2*x)2、若r1=r2,则y=(C1+C2x)*e^(r1*x)3、若r1,2=α±βi,则y=e^(αx)*(C1cosβx+C2sinβx)第三步:特解f(x)的形式是e^(λx)*P(x)型,(注:P(x)是关于x的多项式,且λ经常为0)则y*=x^k*Q(x)*e^(λx)(注:Q(x)是和P(x)同样形式的多项式,例如P(x)是x2+2x,则设Q(x)为ax2+bx+c,abc都是待定系数)1、若λ不是特征根 k=0 y*=Q(x)*e^(λx)2、若λ是单根 k=1 y*=x*Q(x)*e^(λx)3、若λ是二重根 k=2 y*=x2*Q(x)*e^(λx)(注:二重根就是上面解出r1=r2=λ)f(x)的形式是e^(λx)*P(x)cosβx或e^(λx)*P(x)sinβx1、若α+βi不是特征根,y*=e^λx*Q(x)(Acosβx+Bsinβx)2、若α+βi是特征根,y*=e^λx*x*Q(x)(Acosβx+Bsinβx)(注:AB都是待定系数)第四步:解特解系数把特解的y*'',y*',y*都解出来带回原方程,对照系数解出待定系数。最后结果就是y=通解+特解。通解的系数C1,C2是任意常数。拓展资料:微分方程。

如何判断一个微分方程是线性,还是非线性微分方程?! 微分方程的线性代数解法

如何判断一个微分方程是线性,还是非线性微分方程?! 如果一个微分方程中仅含有未知函数及其各阶导数作为整体的一次幂,则称它为线性微分方程。可以理解为此微分方程中的未知函数y是不超过一次的,且此方程中y的各阶导数也应该。

如何判断一个微分方程是线性,还是非线性微分方程?! 微分方程的线性代数解法

微分方程的问题~这里写的线性代数的知识是啥?怎么得出后面的等式的

总结偏微分方程的解法 可分为两大分支:解析解法和数值解法。只有很少一部分偏微分方程能求得解析解,所以实际应用中,多求数值解。数值解法最常见的有三种:差分法(最普遍最通用)、有限体积法、有限元法,其他数值解法还有:正交配置法、微扰法(可解薛定谔方程)、变分法等等。向左转|向右转扩展资料:导数(Derivative)是微积分学中重要的基础概念。对于定义域和值域都是实数域的函数f:R→R,若f(x)在点x 0 的某个邻域△x内,极限定义如下f′(x 0)=△x→0lim△xf(x 0+△x)?f(x 0)(1.1)若极限存在,则称函数f(x)在点x 0 处可导,f′(x 0)称为其导数,或导函数,也可以记为 dxdf(x 0)。在几何上,导数可以看做函数曲线上的切线斜率。给定一个连续函数,计算其导数的过程称为微分(Differentiation)。微分的逆过程为积分(Integration)。函数f(x)的积分可以写为F(x)=∫f(x)dx(1.2)其中F(x)称为f(x)的原函数。若函数f(x)在其定义域包含的某区间内每一个点都可导,那么也可以说函数f(x)在这个区间内可导。如果一个函数f(x)在定义域中的所有点都存在导数,则f(x)为可微函数(Differentiable Function)。可微函数一定连续,但连续函数不一定可微。例如函数∣x∣为连续函数,但在点x=0处不。

#抽象代数#矩阵分解#微积分#微分方程#导数

随机阅读

qrcode
访问手机版