ZKX's LAB

在瑞利衰落信道仿真中什么是等距离法 瑞利信道衰落模型的信道表示

2020-10-04知识12

什么是单径瑞利信道什么是多径瑞利信道 1、单径瑞利信道和 多径 瑞利信道都属于瑞利衰落信道;2、瑞利衰落信道(Rayleigh fading channel)是一种无线电信号传播环境的统计模型。这种模型假设信号通过无线信道。

在瑞利衰落信道仿真中什么是等距离法 瑞利信道衰落模型的信道表示

什么是衰落信道 在无线通信领域,衰落是指由于信道的变化导致接收信号7a64e78988e69d8331333337383831的幅度发生随机变化的现象,即信号衰落。导致信号衰落的信道被称作衰落信道。衰落可按时间、空间、频率,三个角度来分类。(1)在时间上,分为慢衰落和快衰落。慢衰落描述的是信号幅度的长期变化,是传播环境在较长时间、较大范围内发生变化的结果,因此又被称为长期衰落、大尺度衰落。快衰落则描述了信号幅度的瞬时变化,与多径传播有关,又被称为短期衰落、小尺度衰落。慢衰落是快衰落的中值。多径传播使信号包络产生的起伏虽然比信号的周期缓慢,但是仍然可能是在秒或秒以下的数量级,衰落的周期常能和数字信号的一个码元周期相比较,故通常将由多径效应引起的衰落称为快衰落。即使没有多径效应,仅有一条无线电路径传播时,由于路径上季节、日夜、天气等的变化,也会使信号产生衰落现象。这种衰落的起伏周期可能较长,甚至以若干天或若干小时计,古称这种衰落为慢衰落。无线通信中,接收端可能会在一段时间内接收到许多来自不同路径的相同信号,这段时间称为延迟扩散(delayspread),而延迟扩散的倒数称作同调带宽(CoherenceBandwidth),物理意义就是在这段带宽区间,衰落的。

在瑞利衰落信道仿真中什么是等距离法 瑞利信道衰落模型的信道表示

matlab R2010b中simulink自带的多径瑞利衰落信道模块中参数是怎么设置才符合规定? 第一个最大多普勒频移取决于移动速度。最大多普勒频移越大表示信道逐渐变成快时变信道,误码性能就会越差。看得出来你的仿真模块中没有对快时变信道衰减进行处理,所以还是取小一点吧。我认为0Hz~50Hz比较合适。第二个是多径各径时延。取值取决于你的符号间隔。一般取符号间隔的倍数。比如你的采样间隔假设是0.001s,那你图中的取值就是合适的。第三个是多径各径功率,大致满足复指数分布。提供两个取值,车辆模式[0,-1,-9],步行模式[0,-0.9,-4.9]。初始种子就随便选了从你的仿真结果图来看,误码率范围差不多是0.45~0.5之间,说明性能极差,你的码几乎没有解调出来。因为从你的仿真模块看你的接收端没有对多径进行处理。建议:先设置最大多普勒频移为0Hz,设置多径个数为1径。看看性能曲线是不是正常的。然后增加最大多普勒频移,观察信道变化快慢对性能的影响;或者增加多径个数,看看多径对性能的影响。希望采纳

在瑞利衰落信道仿真中什么是等距离法 瑞利信道衰落模型的信道表示

瑞利衰落信道的背景知识 在无线通信信道环境中,电磁波经过反射折射散射等多条路径传播到达接收机后,总信号的强度服从瑞利分布。同时由于接收机的移动及其他原因,信号强度和相位等特性又在起伏变化,故称为瑞利衰落。如果收到的信号中除了经反射折射散射等来的信号外,还有从发射机直接到达接收机(如从卫星直接到达地面接收机)的信号,那么总信号的强度服从莱斯分布,故称为莱斯衰落。一般来说,多路信号到达接收机的时间有先有后,即有相对时(间)延(迟)。如果这些相对时延远小于一个符号的时间,则可以认为多路信号几乎是同时到达接收机的。这种情况下多径不会造成符号间的干扰。这种衰落称为平坦衰落,因为这种信道的频率响应在所用的频段内是平坦的。相反地,如果多路信号的相对时延与一个符号的时间相比不可忽略,那么当多路信号迭加时,不同时间的符号就会重叠在一起,造成符号间的干扰。这种衰落称为频率选择性衰落,因为这种信道的频率响应在所用的频段内是不平坦的。至于快衰落和慢衰落,通常指的是信号相对于一个符号时间而言的变化的快慢。粗略地说,如果在一个符号的时间里,变化不大,则认为是慢衰落。反之,如果在一个符号的时间里,有明显变化,则认为是快衰落。理论。

在瑞利衰落信道仿真中什么是等距离法 瑞利信道仿真的是信号的衰落情况,高斯信道仿真的是信号传播中的噪声影响,噪声是必须有的。

瑞利衰落信道的介绍 瑞利衰落信道(Rayleigh fading channel)是一种无线电信号传播环境的统计模型。这种模型假设信号通过无线信道之后,其信号幅度是随机的,即“衰落”,并且其包络服从瑞利。

瑞利衰落信道的适用范围 瑞利衰落模型适用于描述建筑物密集的城镇中心地带的无线信道。密集的建筑和其他物体使得无线设备的发射机和接收机之间没有直射路径,而且使得无线信号被衰减、反射、折射、衍射。在曼哈顿的实验证明,当地的无线信道环境确实接近于瑞利衰落。[3]通过电离层和对流层反射的无线电信道也可以用瑞利衰落来描述,因为大气中存在的各种粒子能够将无线信号大量散射。瑞利衰落属于小尺度的衰落效应,它总是叠加于如阴影、衰减等大尺度衰落效应上。信道衰落的快慢与发射端和接收端的相对运动速度的大小有关。相对运动导致接收信号的多普勒频移。图中所示即为一固定信号通过单径的瑞利衰落信道后,在1秒内的能量波动,这一瑞利衰落信道的多普勒频移最大分别为10Hz和100Hz,在GSM1800MHz的载波频率上,其相应的移动速度分别为约6千米每小时和60千米每小时。特别需要注意的是信号的“深衰落”现象,此时信号能量的衰减达到数千倍,即30~40分贝。

瑞利衰落的模型 瑞利分布是一个均值为0,方差为σ^2的平稳窄带高斯过程,其包络的一维分布是瑞利分布。其表达式及概率密度如图所示。瑞利分布是最常见的用于描述平坦衰落信号接收包络或独立多径分量接受包络统计时变特性的一种分布类型。两个正交高斯噪声信号之和的包络服从瑞利分布。瑞利衰落能有效描述存在能够大量散射无线电信号的障碍物的无线传播环境。若传播环境中存在足够多的散射,则冲激信号到达接收机后表现为大量统计独立的随机变量的叠加,根据中心极限定理,则这一无线信道的冲激响应将是一个高斯过程。如果这一散射信道中不存在主要的信号分量,通常这一条件是指不存在直射信号(LOS),则这一过程的均值为0,且相位服从0 到2π 的均匀分布。即,信道响应的能量或包络服从瑞利分布。设随机变量R,于是其概率密度函数如图所示,其中2σ^2=E(R^2)。瑞利衰落概率密度函数若信道中存在一主要分量,例如直射信号(LOS),则信道响应的包络服从莱斯分布,对应的信道模型为莱斯衰落信道。通常将信道增益以等效基带信号表示,即用一复数表示信道的幅度和相位特性由此瑞利衰落即可由这一复数表示,它的实部和虚部服从于零均值的独立同分布高斯过程。

瑞利衰落信道的如何克服 在MIMO中,传统的多天线被用来增加分集度从而克服信道衰落。具有相同信息的信号通过不同的路径被发送出去,在接收机端可以获得数据符号多个独立衰落的复制品,从而获得更高的接收可靠性。举例来说,在慢瑞利衰落信道中,使用1根发射天线n根接收天线,发送信号通过n个不同的路径。如果各个天线之间的衰落是独立的,可以获得最大的分集增益为n,平均误差概率可以减小到,单天线衰落信道的平均误差概率为。对于发射分集技术来说,同样是利用多条路径的增益来提高系统的可靠性。在一个具有m根发射天线n根接收天线的系统中,如果天线对之间的路径增益是独立均匀分布的瑞利衰落,可以获得的最大分集增益为mn。智能天线技术也是通过不同的发射天线来发送相同的数据,形成指向某些用户的赋形波束,从而有效的提高天线增益,降低用户间的干扰。广义上来说,智能天线技术也可以算一种天线分集技术。分集技术主要用来对抗信道衰落。相反,MIMO信道中的衰落特性可以提供额外的信息来增加通信中的自由度(degrees of freedom)。从本质上来讲,如果每对发送接收天线之间的衰落是独立的,那么可以产生多个并行的子信道。如果在这些并行的子信道上传输不同的信息流,可以提供传输数据。

在瑞利衰落信道仿真中什么是等距离法 好像很高深的样子

#多径衰落#信道带宽#瑞利衰落#频率选择性衰落#多径效应

随机阅读

qrcode
访问手机版