ZKX's LAB

如题,怎么求,说清晰和通俗,有公式,简单的推导,简便,有图最好(或者你拼命点说得没图也好像有图),切记通俗和简便~ 用向量求两异面直线间的距离

2020-10-04知识8

求两异面直线间的距离的方法? 欢迎关注 橘子数学 微信公众号,阅读更多高中数学拓展内容.以下回答来自我的专栏文章,需要了解更多公垂…

如题,怎么求,说清晰和通俗,有公式,简单的推导,简便,有图最好(或者你拼命点说得没图也好像有图),切记通俗和简便~ 用向量求两异面直线间的距离

异面直线间的距离用空间向量怎么求?? 1.过点p作与已知面2113垂直的面,找到p的射影5261p',这样距离d=pp'.2.在四4102面体中已知两个面的面积1653和一个顶点到其中一个面的距离,用等体积法.3.在过p且与已知面垂直的直线上找另一点并作其射影.此法一般在正六面体中使用.算得的距离也可以看作是线面距离.4.向量法若向量n为平面的法向量,向量pa在平面的一条斜线上,则d=ㄧ向量pa×向量n︱/ㄧ向量nㄧ

如题,怎么求,说清晰和通俗,有公式,简单的推导,简便,有图最好(或者你拼命点说得没图也好像有图),切记通俗和简便~ 用向量求两异面直线间的距离

两条异面直线的距离公式用向量如何表示 ①作直线a、b的方向向量a、b,求a、b的法向量n,即此异面直线a、b的公垂线的方向向量;②在直线a、b上各取一点A、B,作向量AB;③求向量AB在向量n上的射影d,则异面直线a、b间的距离为

如题,怎么求,说清晰和通俗,有公式,简单的推导,简便,有图最好(或者你拼命点说得没图也好像有图),切记通俗和简便~ 用向量求两异面直线间的距离

异面直线的距离能用向量法求吗 能.异面直线间的距离S=向量AC点乘向量n的绝对值除以向量n的模.

异面直线间的距离用空间向量怎么求? 从点上做垂线到直线直线用函数表示射该点坐标满足该函数把该点和空间中的点用向量表示则已知直线上2点向量和该点和空间中的点用向量表示的那个向量乘积是0因为题目过于抽象,可能你理解也有些抽象最好给原题

两条空间直线求最短距离(或最接近点) 首先2113将直线方程化为对称式,得到其方向向量n1=(a1,b1,c1),n2=(a2,b2,c2)。5261再将两向量4102叉乘得到其公垂向量N=(x,y,z),在两直线上分别选取点A,B(任意1653),得到向量AB,求向量AB在向量N方向的投影即为两异面直线间的距离了(就是最短距离)。d=|向量N*向量AB|/|向量N|(上面是两向量的数量积,下面是取模),设交点为C,D,带入公垂线N的对称式中,又因为C,D两点分别满足一开始的直线方程,所以得到关于C(或D)的两个连等方程。可以得出坐标为(1a,3B)。扩展资料:点到直线的距离计算方法:函数法证:点P到直线上任意一点的距离的最小值就是点P到直线的距离。在上取任意点用两点的距离公式有,为了利用条件上式变形一下,配凑系数处理得:当且仅当时取等号所以最小值就是。不等式法证:点P到直线上任意一点Q的距离的最小值就是点P到直线的距离。由柯西不等式:当且仅当时取等号所以最小值就是。转化法证:设直线的倾斜角为过点P作PM∥轴交于M显然所以,易得∠MPQ=或∠MPQ,在两种情况下都有所。三角形法证:P作PM∥轴交于M,过点P作PN∥轴交于N,由解法三知;同理得在Rt△MPN中,PQ是斜边上的高。参考资料来源:-点到直线的距离

请问异面直线的距离怎么求?谢谢。 求异面直线距离有以5261下四种方法:?(1)直接法:当公垂4102线段直接能作出1653时,直接求。此时,作出并证明异面直线的公垂线段,是求异面直线距离的关键。(2)转化法:把线线距离转化为线面距离,如求异面直线a,b距离,先作出过a且平行于b的平面α,?则b与α距离就是a,b距离。(3)线面转化法:也可以转化为过a平行b的平面和过b且平行于a的平面,两平行平面的距离就是两条异面直线距离。(4)体积桥法:利用线面距再转化为锥体的高用体积公式来求。(5)构造函数法:常常利用距离最短原理构造二次函数,利用求二次函数最值来解。扩展资料:异面直线的判定方法:(1)定义法:由定义判定两直线永远不可能在同一平面内,常用反证法。(2)判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线。例证:判定定理:平面的一条交线与平面内不经过交点的直线互为异面直线。已知:AB∩α=A,CD?α,A?CD。求证:AB和CD互为异面直线。证明:假设AB和CD在同一平面内,设这个平面是β。即A∈β,CD?β。A∈α,CD?α,A?CD由不在同一直线上的三个点确定一个平面可知,α和β重合。AB?βAB?α,这与已知条件AB∩α=A矛盾。AB和CD不在同一。

两异面直线的距离公式是什么 两异面2113直线的距离公式是d=【AB*n】/【n】(AB表示异面直线5261任意41022点的连线,n表示法向量)。1653异面直线的距离,确定和计算两条异面直线间的距离,关键在于实现两个转化:一是转化为一条异面直线和另一条异面直线所在而与它平行的平面之间的距离。二是转化为两条异面直线分别所在的两个平行平面之间的距离。拓展资料和两条异面直线都垂直相交的直线叫做两条异面直线的公垂线,公垂线与两条直线相交的点所形成的线段,叫做这两条异面直线的公垂线段。两条异面直线的公垂线段的长度,叫做这两条异面直线的距离。定理一:任意两条异面直线有且只有一条公垂线。定理二:两条异面直线的公垂线段长(异面直线的距离)是分别连结两条异面直线上两点的线段中最短的一条。参考资料:-异面直线的距离

如题,怎么求,说清晰和通俗,有公式,简单的推导,简便,有图最好(或者你拼命点说得没图也好像有图),切记通俗和简便~ 教你几种求异面直线间的距离的方法1,能够直接快速的找到或作出公垂线,把公垂线段放到三角形里解或是利用坐标,向量都可以;2,如果一条直线a平行与另一条异面直线b所在的平面α,则这两异面直线的距离就是求直线a 到平.

随机阅读

qrcode
访问手机版