ZKX's LAB

点到直线距离公式的推导过程 点到直线的距离公式如何推导?

2020-07-20知识11

1.点到直线的距离是怎么推导出来这个公式的?我想了解下推导出这个公式的思路; 点M到直线的距离,即过点M向已知直线作垂线,设垂足为N,则垂线段MN的长即是所求的点到直线的距离.但如何求此线段的长呢?同学们给出了不同的解决方法.方法一:求出过点M且与已知直线aX+bY+c=0(a、b均不为零)垂直的直.如何推导点到直线间的距离公式? 假设直线L0为:AX+BY+C=0,平面上非在线上的任意一点为M(X0,Y0)过点M作垂直于L0的直线L1交L0于点N(X1,Y1),点M到直线L0的距离即为线段MN的长度则有:L1的直线方程为:Y-Y0=-1/A*(X-X0),且有X-X0/Y-Y0=-1/A联立L1与L.点到直线的距离公式如何推导? 设:直线方程y=ax+b 点的坐标(p,q)考虑到要求点到直线的距离,与过该点与已知直线垂直的直线重合,所以先求过已知点与已知直线垂直的直线方程:y=(-1/k)x+(p/k+q)联立两方程求得交点坐标,然后再用平面间两点距离公式求距离.高中数学点到直线的距离公式是怎么推导出来的,书本上的推导过程跳不太多我看不明白,请有学问的详细的说一下吧,我在这里拜谢了 这东西要自己推导才记得牢给你个思路你先设一点 不在直线上的(A,B)然后在直线上取一点比如是Y=2X吧 则点就是(x,2x)然后求2点之间的距离 会吧?然后求最小值求点到直线距离公式推导过程。我初三,麻烦详细一点 点到直线距离公式推导过程, 设点(m,n)直线方程aX+bY+c=0距离=((am+bn+c)的绝对值)/根号(a^2+b^2)这个,就最熟的了,也最常用了。其他的还真一时想不起来~=|点到直线的距离公式是什么?以及推导过程 还有很多方法,这是简单的一种点到直线距离公式推导过程 求点P(x2,y2)到直线L1:ax+by+c=0距离公式:直线L1:ax+by+c=0的斜率k1为-a/b与他垂直直线L2的斜率k2为b/a根据点斜式求出直线L2的表达式为y-y2=k2(x-x2)解联立方程求交点A(x1,y1)根据两点距离公式求AP间的距离。点到直线距离公式证明方法 设点A(m.n)到直线y=kx+b的距离首先,求过点A且与直线y=kx+b垂直的直线方程过点A且与直线y=kx+b垂直的直线方程设为y=-x/k+c【因为两直线垂直,其斜率乘积为-1,即k1k2=-1】所以有n=-m/k+b=>;b=n+m/k=(nk+m)/k所以过A点且垂直y=kx+b的直线方程为y=-x/k+(nk+m)/k其次,求这两条直线的交点坐标,即联解这两个直线方程直线y=kx+b与直线y=-x/k+(nk+m)/k的交点坐标kx+b=-x/k+(nk+m)/k解出x,然后解出y即是交点坐标,假设为B点(p,q)最后,根据两点距离公式求出点A到y=kx+b的距离AB|=√[(m-p)2+(n-q)2]点到直线的距离公式具体推导过程? 高中数学点到直线的距公式的推导:在人教大纲版高二数学上册中,关于点到直线距离公式的推导方法,教材介绍了两种推导方法,并详细给出了利用直角三角形的面积公式推导得出点到直线的距离公式的具体过程。其实关于点到直线的距离公式的推导方法,除上述方法之外,还有其它很多方法,在这些方法中,向量法(利用平面向量的有关知识来推导的方法)是一种行之有效的推导方法。其推导思路简单明了、运算量也较小。上述推导方法利用了向量的数量积知识来进行推导出了点到直线的距离公式,这是一种比较重要有数学思想方法。我们还可将这种思想方法进一步推广到在立体几何中,如何利用空间向量解决求点到平面的距离问题。

#直线方程#数学

随机阅读

qrcode
访问手机版