集合论正则公理如何把握其中的含义? 在看陶哲轩实分析,正则公理如何去理解?非空集合A,A一定存在元素x,x要么不是集合,如果是集合一定和A…
公理集合论的分支 在公理集合论的研究中,大量的工作是关于集合论模型的,此外,还继续此前朴素集合论对无穷组合问题的研究即组合集合论的研究。其中的一些问题是来源于柯尼希树引理和 F.P.拉姆齐定理的推广。另一分支则为描述集合论(亦称解析集合论),主要是研究划分层次以后的实数子集的结构性质问题。因而,这一部分与分析、实数理论和递归论的关系较为密切。即使限于上述两个分支的研究,也有许多问题要用到ZF(或ZFC)以外的附加假设才能判定。这里,常用的附加假设有:可构成公理;各种大基数公理,以及与AC不协调的决定性公理等。哥德尔在1938年提出了可构成公理,并在60年代末和70年代得到重视和发展。至于大基数的研究由来已久,但其作为附加公理亦是在60年代以后。几乎每一种大基数都是ω的某种性质向不可数基数的推广。可构成性、大基数和力迫法已成为公理化集合论的三大主流,同时它们又是三种研究工具。随着无穷博弈的诞生和博弈论在数学各分支的渗透,以及博弈论与逻辑的关系日益密切,决定性公理也愈受到重视。选择公理是现代数学中最常用的假设,过去许多人曾不自觉地使用。对这个问题引起注意,是因为康托尔在1883年提出任意集合是否都可良序化的问题。希尔伯特也。
一个关于序对的问题? 这只是一种定义方式而已(x,y)=(a,b)那么有{{x,x},{x,y}}={{a,a}{a,b}}显然,只有x=a,y=b时上式成立x=b,y=a 时上式不成立这样就说明了(x,y)是有序对一般有序对常用定义是(a,b)={{a},{a,b}}还可以这样定义(a,b)={{[a},0},{{b}}}所以有很多种定义方式
请问公理集合论是如何解决罗素悖论的? 看了点儿书,但还是不懂,手边又没有中文版的关于公理集合论的好的教材,所以产生疑问。请问公里集合论…
概率的公理化定义是什么? 概率的公理化包括两个方面:一是事件的公理化表示(利用集合论),二是概率的公理化表示(测度论)。其次是建立在集合之上的可测函数的分析和研究,这就可以利用现代分析技术了。1、这些工作是由前苏联数学家科尔莫格洛夫在1933年完成的。这里关于西格玛域(代数)等这些就不定义了,直接给出三条公理。2、根据概率的公理化定义,概率指的是满足如下三个特点的集合函数(亦即以集合为定义域的实值函数):(1)非负性。亦即概率的取值不能是负数。实际上,任何“测度”,例如长度、面积、体积、重量等,都不能取负数。因此,作为针对“可能性”的测度,概率自然也不能取负数。(2)正则性。亦即概率的取值不能超过1。相较于其它的测度,正则性是概率这种测度的特别之处。因为诸如长度、面积、体积以及重量之类的测度都没有取值上限这种约束。而概率的取值之所以要求不能超过1,实在是基于我们对“可能性”大小这一判断的经验(或习惯)做法。(3)(无限)可列可加性。亦即无限个互不相容集合(事件)的并的概率,等于无限个(与每一个集合相对应的)概率之和。概率的可列可加性有两个含义:一是互不相容的集合的并的概率,等于其中每一个集合的概率之和。这一规定仍是基于。
什么是公理化集合论什么是抽象集合论 不是很清楚,貌似公理集的产生和罗素悖论有关
公理化集合论所有对象都是集合吗? 在某处看到了这句话,查了下资料发现自然数确实能用集合构造,我主要的问题是映射是否也可以定义为集合?