ZKX's LAB

初等函数在定义域内是连续函数要证明吗 1:为什么说

2020-10-03知识20

如何证明函数是连续的

初等函数在定义域内是连续函数要证明吗 1:为什么说\

怎样判断函数连续问题? 你要从定义入手啊,在这点的极限值等于函数值就是连续.函数连续的充分必要条件是:左连续,右连续且相等.一个函数在这点可导,那么一定连续.从定义入手判断是最直接的.其他的论断都是通过定义来证明的.初等函数,在其定义域内都是连续的.

初等函数在定义域内是连续函数要证明吗 1:为什么说\

一切初等函数在其定义域内都是连续的,这句话为什么是错误的? 是错的,应该2113是初等函数在其定义区间内5261是连续的,定义区4102间是指包含在定义域内的区间1653。但是基本初等函数在其定义域内连续是正确的说法。初等函数在其定义区间内连续,而函数的定义区间与函数的定义域并不完全相同,因为函数的定义域有时是由一些离散的点及一些区间构成的,对于定义域内的这些孤立的点,根本谈不上函数的连续问题,而只能在定义域内的区间上讨论连续性。这些区间,我们称之为函数的定义区间。初等函数在其定义域内的区间(即定义区间)上是连续的。扩展资料连续函数的性质:1、在某点连续的有限个函数经有限次和、差、积、商(分母不为0)运算,结果仍是一个在该点连续的函数。2、连续单调递增(递减)函数的反函数,也连续单调递增(递减)。3、连续函数的复合函数是连续的。4、一个函数在某点连续的充要条件是它在该点左右都连续。

初等函数在定义域内是连续函数要证明吗 1:为什么说\

所有基本初等函数在其定义域内都是连续的,这句话对吗 所有基本初等函数在其定义域内都是连续的,这句话是对的。连续函数的其他性质:1、在某点连续的有限个函数经有限次和、差、积、商(分母不为0)运算,结果仍是一个在该点。

如何证明一个分段函数可导

基本初等函数在起定义域内都是可导的吗?

「初等函数在其定义域内必连续」的说法是对是错,为什么? 在考研资料上看到这句话被用作证明,但总觉得怪怪的,自己的知识水平不够无法判断,求相助。

1:为什么说\ 第一句话是哪儿来的?不知道你们教材上对定义域和定义区间是怎么分别的?一般的分析书上都是说初等函数在其定义域内连续.第二题是错的.存在只在一个点可导,其余点都不连续的函数.比如f(x)=x^2D(x),其中D(x)是Dirichlet函数,就是有理点函数值是1,无理点函数值是0的函数.用定义可以证明f在0可导,f'(0)=lim[f(x)-f(0)]/(x-0)=0,但在任意不等于0的点是不连续的.

不可导函数和可导函数乘积可不可导 1.证明函数在整个区间内连续(初等函数在定义域内是连续的)2.先用求导法则求导,确保导函数在整个区间内有意义 3.端点和分段点用定义求导 4.分段点要证明左右导数均存在且相等 先求导,令导函数为零.得根.再用穿根法.画数轴从上往下穿奇穿偶不穿,若所有根两边的在数轴的同侧说明不可导,若有一个根不否合则可导

随机阅读

qrcode
访问手机版