正态分布与偏态分布的概念是什么, 正态分布:概率论中最重要的一种分布,也是自然界最常见的一种分布.该分布由两个参数—平均值和方差决定.概率密度函数曲线以均值为对称中线,方差越小,分布越集中在均值附近.偏态分布:与正态分布相对而言.它有两个特点:一是左右不对称(即所谓偏态);二是当样本增大时,其均数趋向正态分布.偏态分布又可分为正偏态分布和负偏态分布两种类型:学学使用搜索引擎啊
正态分布的含义 名片正态分布(normal distribution)又名高斯分布(Gaussian distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。若随机变量X服从一个数学期望为μ、标准方差为σ2的高斯分布,记为:则其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。因其曲线呈钟形,因此人们又经常称之为钟形曲线。我们通常所说的标准正态分布是μ=0,σ=1的正态分布。normal distribution一种概率分布。正态分布是具有两个参数μ和σ2的连续型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数σ2是此随机变量的方差,所以正态分布记作N(μ,σ2)。服从正态分布的随机变量的概率规律为取与μ邻近的值的概率大,而取离μ越远的值的概率越小;σ越小,分布越集中在μ附近,σ越大,分布越分散。正态分布的密度函数的特点是:关于μ对称,在μ处达到最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点。它的形状是中间高两边低,图像是一条位于x轴上方的钟形曲线。当μ=0,σ2=1时,称为标准正态分布,记为N(0,1)。μ维随机向量具有类似的概率规律时,称此随机向量遵从。
用什么描述正态分布计量资料的分布特征 一 正态分布的概念 1定义 如果随机变量X的概率密度函数有如下形式:则称X服从参数为μ,σ2的正态分布。记作X~N(μ,σ2)。。
正态分布与标准正态分布在概念和应用上有何异同 实际这就是一个坐标系的转换。在一般形式的正态分布中,变量是X,是采样的具体数据,所求值要么是具体的该数据下的数据量,要么是此数据量在总数据量中所占的百分比,(当首项分母为1时);而在标准正态分布中,变量是采样的具体数据与总体均值的差值并且用标差为单位显示出来(比上标差σ),所求值也变成了与总体均值有某个差值的数据(以σ为单位表示出来)占总数据量的百分比(或概率),实际上就是总数据按σ分布的情况了,而这里的σ也没了具体的值了,只是一个分布单位,体现的是一个具体分布所具有的数据结构。感觉从一般正态分布公式“提炼”出标准正态分布,就象给一个具体数据系统提练出了一个“系数”一般,只不过这个系数能比一般的系数体现出的内容,能体现出一个数据系统的特有的数据分布情形。