已知函数f(x)的定义域是(负无穷大,0)∪(0,正无穷大),对定义域内的任意x1,x2,都有 证明函数的单调性时,要看原函数是不是在整个定义域上,单调一般有两种情况1,在整个定义域上单调,证明时,设置三种情况的x1,同时在右半定义域,同时在左半,一个在左一个在右;2只在左半单调和只在右半单调,而在整个定义域上不单调,如:y=1/x证明时,作为两题做即可已知定义域为(0,正无穷大)的函数f(x)满足:1.当x>1时,f(x) 1.证明:令X1,X2∈(0,+∝),且X1>;X2,则2.因为,f(x)+f(5-x)≥-2.且x∈(0,+∝),所以,f(x)+f(5-x)+2≥0即 f(x)+f(5-x)+1+1=f(x)+f(5-x)+f(1/2)+(1/2)=f(x)+f(5-x)+f(1/4)=f(x/4)+f(5-x)≥0因为,函数f(x)的定义域在(0,+∝).已知函数f(x)的定义域为(0,正无穷大)且f(x)在(0,正无穷大)上为增函数,f(xy)=f(x)+f(y),若f(2)=1 事实上,f(x)是一个对数函数.不妨令x=2^a,y=2^b,则有f(2^(a+b))=f(2^a)+f(2^b).令g(x)=f(2^x),定义域为R,则g(a+b)=g(a)+g(b).这是一个经典的柯西函数方程.由f(x)单调,可以证明g(x)为正比例函数.结合g(1)=f(2^1)=1,可.1:已知定义域为R的偶函数F(X)在[0,正无穷大)上是增函数,且F(1/2)=0,求不等式F(log4x) 1.因为F(1/2)=0且F(X)在[0,正无穷大)上是增函数,所以F(X)在(0,1/2)上小于0,因为X定义域为R的偶函数,所以F(X)在(-1/2,0)上小于0,所以原不等式化简成-1/2已知fx的定义域为(0,正无穷大) 且y=f(x)/x在(0,正无穷大)上为增函数 (1)求证: (1)y=f(x)/x在(0,+∞)上为增函数,设0,则x2,于是f(x1)/x1(x2)/x2(x1+x2)/(x1+x2),而[x1/(x1+x2)]f(x1)/x1+[x2/(x1+x2)]f(x2)(x2)/x2,即[f(x1)+f(x2)]/(x1+x2)(x2)/x2(x1+x2)/(x1+x2),f(x1)+f(x2)(x1+x2).(2)?已知函数fx在其定义域x属于[0,正无穷大)时单调递增 根据题意,有f(0+0)=f(0)+f(0)+1=2f(0)+1f(0)=2f(0)+1f(0)=-1f(3)=f(2+1)=f(2)+f(1)+1=f(1)+f(1)+1+f(1)+1=3f(1)+2=3*2+2=8所以,f(0)=-1,f(3)=8已知某对数函数的值域,如何求定义域 对数函数是单调函数所以就是解不等式值域[m,n]则m已知函数f(x)的定义域为[负无穷大,正无穷大),在[0,正无穷大)是增函数,切满足f(-x)=-f(x) 用定义法证明f(x) 任取 x1所以-x1>-x2>0由 f(x)在[0,+∞)上 是增函数,可知 f(-x1)>f(-x2),即 f(-x1)-f(-x2)>0那么 f(x1)-f(x2)=-[-f(x1)-(-f(x2))](f(-x1)-f(-x2))所以 f(x)在(-∞,0)上 也是 曾函数已知定义域为(0,正无穷大)的函数f(x)满足 证明1。因为对任意的x,y属于R正,都有f(xy)=f(x)+f(y)令y=1,所以f(x)=f(x)+f(1)则(1)=0在令y=1/x所以f(1)=f(x)+f(1/x)则f(1/x)=-f(x)2.设x1,x2∈(0,∞)且x1而f(1/x1)=-f(x1)则f(x2)-f(x1)=f(x2)+f(1/x1)=f(x2/x1)因为x1,则x2/x1>;1而当x>;1时,f(x)所以f(x2/x1)即f(x2)(x1)则f(x)在定义域为减函数3.令y=2,x=1/2所以f(1)=f(1/2)+f(2)而f(1/2)=1,则f(2)=-1在令y=x=2所以f(4)=2f(2)=-2则f(x)+f(5-x)=f{x(5-x)}≥f(4)即x>05-x>0x(5-x)≤4解得0≤1或4≤x<5已知函数f(x)=2x-a/x的定义域为(0,正无穷大 y=2x+1\\x y大于等于根号2 此函数为对勾函数 因为x>;0 函数y在x=根号下(a\\2)单调性发生改变 所以只需根号下(a\\2)小于等于1即可 解得 a大于等于-2 且小于0
随机阅读
- 小区重大决策 家庭中重大事情的决策需要让孩子知道吗?为什么?
- 翠绿色衣服搭配姜黄色围巾 脸色发黄的人适合穿什么颜色的衣服
- 汽车冷却系统负压是什么原因 冷却水出口防空头负压
- 如何系统地自学 Python? ge200效果器使用说明书
- 试写出1-丁烯与高温氯代的反应机理? 试写出丙烯高温氯代的反应机理
- 苏州福满家超市招聘 苏州有FAMILY MART(全家超市)吗?
- 歌词感情的债要怎么还 请问这歌词是哪首歌里面的,(我的爱,也曾经深深温暖你的心灵,你和他之间,是否已经有了真感情~~~)
- 椎名空资源先锋影音 椎名麻美的片子可以发给我吗
- 美国圣托马斯摩尔高中 美国威斯康星州圣托马斯摩尔高中的入学申请条件是什么,要不要slep成绩?
- 油酸酰胺热稳定性好 高纯硬脂酸酰胺与硬脂酸酰胺性能区别?
- 红警坦克4d里有人vip打上去的,这个怎么打。哪位大神说下 红警坦克4d资源矿颜色
- 泸溪县的社会事业 泸溪兴隆场永兴场中学
- 此恨绵绵无绝期的理解
- 本科环境工程专业,现在急需确立一个实验课题,固体废弃物方面的,谁来提供点思路或者方向或者资料什么的 工程试验资料在大家的努力下
- 梁模板架设时为什么要起拱 什么情况下对模板需要起拱
- 十一想找人组团出去旅游~~有推荐不? 怀来水幕电影音乐喷泉
- 汕尾凤山妈祖到保利金町湾 刘藏元观音画成交价格
- 刘淼淼演过哪些? 林聪吻了赵燕图片
- 西安市第一医院看近视眼科怎么样 西安做近视手术,第一医院,第四医院,武警医院,哪个好一点?价位实
- 中星怡景花园在哪 中星怡景花园房价谁了解?有哪位晓得?