ZKX's LAB

随机微分方程 百度云 随机偏微分方程这块做的比较好的大学有哪些学校

2020-10-01知识9

请问,学习随机微分方程需要什么数学基础?谢谢! 顾名思义,首先需要微积分中求解微分方程的基础知识,其次要有概率论和数理统计的基础知识。不知道你是什么背景,浙大朱位秋院士在随机振动方面做得比较突出。

如何用matlab来拟合随机微分方程 %EM Euler-Maruyama method on linear SDESDE is dX=lambda*X dt+mu*X dW,X(0)=Xzero,where lambda=2,mu=1 and Xzero=1.Discretized Brownian path over[0,1]has dt=2^(-8).Euler-Maruyama uses timestep R*dt.randn('state',100)lambda=2;mu=1;Xzero=0.5;T=1;N=2^8;dt=1/N;dW=sqrt(dt)*randn(1,N);W=cumsum(dW);problem parametersBrownian incrementsdiscretized Brownian pathXtrue=Xzero*exp((lambda-0.5*mu^2)*([dt:dt:T])+mu*W);plot([0:dt:T],[Xzero,Xtrue],'m-'),hold onR=4;Dt=R*dt;L=N/R;L EM steps of size Dt=R*dtXem=zeros(1,L);preallocate for efficiencyXtemp=Xzero;for j=1:LWinc=sum(dW(R*(j-1)+1:R*j));Xtemp=Xtemp+Dt*(1.5*Xtemp-0.5*Xtemp*Xtemp)+sqrt((1-Xtemp)*Xtemp)*Winc;Xem(j)=Xtemp;endplot([0:Dt:T],[Xzero,Xem],'r-*'),hold offxlabel('t','FontSize',12)ylabel('X','FontSize',16,'Rotation',0,'HorizontalAlignment','right')emerr=abs(Xem(end)-Xtrue(end))

完整学习测度论、实分析、随机微分方程需要多久时间? 有数分、线代、概率、常微的基础,会一点集合论。没有泛函、拓扑基础。对于实分析、测度,自学了年把,没…

怎样学习随机微分方程?需要哪些基础? 需要《概率论》《随机过程》《常微分方程》这三门基础课高级的一点,最好学学《高等概率论》或《测度论》.

各位金融工程大神们,你们的泛函分析、偏微分方程、随机分析、随机微分方程等等课程是自学吗? 为什么不上优矿http://www. uqer.io或者 Quantopian 申请个账户,然后把你学到的用python来验证下呢?这样会很有意思。另外Neftci的AN 。http://jroni.com 研究型学习 。

随机偏微分方程这块做的比较好的大学有哪些学校 清华,复旦,上海交大

实变函数 复变函数 常微分方程 偏微分方程 随机过程的学习顺序 先学复变函数,再学常微分方程。因为微分方程都要在复数域内讨论。实变函数一般在大三学,先修课程是复变函数和数学分析。随机过程内容不了解,一般本科生大三学。偏微分方程我还没学,必须放在常微分方程后面,我记得高教出版的俄罗斯的一本偏微分教材还要求具有实变函数的基础。数学物理方程也是求解偏微分方程的入门课,同时也综合数分,高代,常微分,复变的内容,不妨先学习它后再考虑偏微分(只是建议)。复变函数可以参看李忠编写的,高教出版社,特点就是简单,如果你数学分析学得好,并学过流形上的微积分,可以参看龚sheng的《复分析导论》,中科大出版社;《常微分方程》参看丁同仁,李承治版的,也可参看王高雄等人版的,二者都不错,后者写得更易懂,另外,俄罗斯庞特里亚金的也很有特色,具备一点点高等代数的知识就能懂,可以作为国内教材的补充;实变函数北大的一本书不错,记不清作者是谁了,你可以搜哈。我不是数学类专业,随机和偏微分本科就不涉及了,也没法去评价这两种教材。

求解随机微分方程 sqr(·)表示平方根(1)Y满足的方程,用Ito公式即可dY=2(2-X)Xdt+2Xsqr(X)dBt+XdBt=(5X-2X^2)dt+2Xsqr(X)dBt(2)先把X的微分方程携程积分形式,积分限是从0到t,下面省略不写Xt=X0+∫(2-Xs)ds+∫sqr(Xs)dBs,两边取期望,最后一项是鞅,期望为0,变为EXt=EX0+E∫(2-Xs)dsEX0+∫E(2-Xs)dsEX0+2t-∫EXsds令f(t)=EXt,则f(t)=EX0+2t-∫f(s)ds,写成常微方程为f'(t)+f(t)-2=0 且初始条件为f(0)=EX0解得EXt=f(t)=(EX0-2)e^(-t)+2

这个简单随机微分方程组(SDE)怎么求解? 不难知道Xt和来Yt都是t和Bt的二元函数,比如Xt,利用Ito公式dXt=(ft+1/2fbb)dt+fbdb,其中b代表Bt,ft和fb和fbb代表f对t和b的一二阶偏导数,令Xt=f(t,Bt)和源Yt=g(t,Bt)均为二元实可测函数,推出ft+1/2fbb=-0.5f,fb=-(a/b)g;同理也可推出gt+1/2gbb=-0.5g,gb=(b/a)f。这样就有了四个PDE构成的pde组,解pde组就行了。答案应该是Xt=AcosBt+BsinBt;Yt=-(b/a)(BcosBt-AsinBt),百其中度AB为任意常数Ps:也可以把pde组写成矩阵形式,解矩阵pde组也知可以,只不过解出来的解是和如上的表达式等价的矩阵形式的解。答案是(Xt,Yt)^T=e^(Bt·D)·(A,B)^T,T是转置符号,其中(A,B)^T为AB俩任意常数构成的列向量,e^(Bt·D)为指数矩阵,其中D为(道0,-a/b,b/a,0)这个2X2的常数阵

随机阅读

qrcode
访问手机版