ZKX's LAB

土壤碳或氮循环监测系统 氮循环过程

2020-07-19知识10

怎样确定实验来交接水稻的碳氮循环 稻田在亚热带农业生态系统中占居主要地位,其土壤碳氮循环与积累具有显著的特点。系统地研究该区稻田生态系统土壤有机碳氮的演变、关键驱动机制并预测其变化趋势,对于稻田优化管理具有重要的意义。本研究以典型生态景观单元调查、长期定位监测结果和历史资料讨论了近30年来稻田土壤碳、氮积累的变化及其驱动机制;利用土壤有机碳循环模型(SCNC)预测了稻田土壤有机碳的演变趋势。主要结果如下:1.亚热带稻田土壤有机碳氮积累量较高,但不同地区之间存在显著差异,平原湖区、低山区、丘陵区依次降低。下图编号是生态系统中氮循环和碳循环及其相互关系的简图。请对图形仔细分析后回答下列问题: (1)C 6 H 12 O 6+6O 2+6H 2 O 6CO 2+12H 2 O+能量(2)异养需氧型;豆科植物为根瘤细菌提供有机物,根瘤菌为豆科植物提供化合态的氮(或氮源)(3)主动氮循环过程 构成陆地生态系统氮循环的主要环节是:生物体内有机氮的合成、氨化作用、硝化作用、反硝化作用和固氮作用。植物吸收土壤中的铵盐和硝酸盐,进而将这些无机氮同化成植物体内的蛋白质等有机氮。动物直接或间接以植物为食物,将植物体内的有机氮同化成动物体内的有机氮。这一过程为生物体内有机氮的合成。动植物的遗体、排出物和残落物中的有机氮被微生物分解后形成氨,这一过程是氨化作用。在有氧的条件下,土壤中的氨或铵盐在硝化细菌的作用下最终氧化成硝酸盐,这一过程叫做硝化作用。氨化作用和硝化作用产生的无机氮,都能被植物吸收利用。在氧气不足的条件下,土壤中的硝酸盐被反硝化细菌等多种微生物还原成亚硝酸盐,并且进一步还原成分子态氮,分子态氮则返回到大气中,这一过程被称作反硝化作用。由此可见,由于微生物的活动,土壤已成为氮循环中最活跃的区域。生物,碳循环和氮循环的特点是什么?如碳的有全球性 ① 碳循环碳是构成生物原生质的基本元素,虽然它在自然界中的蕴藏量极为丰富,但绿色植物能够直接利用的仅仅限于空气中的二氧化碳(CO2)。生物圈中的碳循环主要表现在绿色植物从空气中吸收二氧化碳,经光合作用转化为葡萄糖,并放出氧气(O2)。在这个过程中少不了水的参与。有机体再利用葡萄糖合成其他有机化合物。碳水化合物经食物链传递,又成为动物和细菌等其他生物体的一部分。生物体内的碳水化合物一部分作为有机体代谢的能源经呼吸作用被氧化为二氧化碳和水,并释放出其中储存的能量。由于这个碳循环,大气中的CO2大约20年就完全更新一次。② 氮循环在自然界,氮元素以分子态(氮气)、无机结合氮和有机结合氮三种形式存在。大气中含有大量的分子态氮。但是绝大多数生物都不能够利用分子态的氮,只有象豆科植物的根瘤菌一类的细菌和某些蓝绿藻能够将大气中的氮气转变为硝态氮(硝酸盐)加以利用。植物只能从土壤中吸收无机态的铵态氮(铵盐)和硝态氮(硝酸盐),用来合成氨基酸,再进一步合成各种蛋白质。动物则只能直接或间接利用植物合成的有机氮(蛋白质),经分解为氨基酸后再合成自身的蛋白质。在动物的代谢过程中,一部分蛋白质被分解为氨、尿酸和。

#水稻#植物

随机阅读

qrcode
访问手机版